import Lbar.ext_preamble noncomputable theory universes u v open opposite category_theory category_theory.limits open_locale nnreal zero_object variables (r r' : ℝ≥0) variables [fact (0 < r)] [fact (0 < r')] [fact (r < r')] [fact (r < 1)] [fact (r' < 1)] open bounded_homotopy_category variables (BD : breen_deligne.data) variables (κ κ₂ : ℝ≥0 → ℕ → ℝ≥0) variables [∀ (c : ℝ≥0), BD.suitable (κ c)] [∀ n, fact (monotone (function.swap κ n))] variables [∀ (c : ℝ≥0), BD.suitable (κ₂ c)] [∀ n, fact (monotone (function.swap κ₂ n))] variables (M : ProFiltPseuNormGrpWithTinv₁.{u} r') variables (V : SemiNormedGroup.{u}) [complete_space V] [separated_space V] def ExtQprime_iso_aux_system_obj_aux' (X : Profinite.{u}) : Ab.ulift.{u+1}.obj ((forget₂ SemiNormedGroup Ab).obj (SemiNormedGroup.Completion.obj ((SemiNormedGroup.LocallyConstant.obj V).obj (op X)))) ≅ (forget₂ SemiNormedGroup.{u+1} Ab.{u+1}).obj (SemiNormedGroup.Completion.obj ((SemiNormedGroup.LocallyConstant.obj (SemiNormedGroup.ulift.{u+1}.obj V)).obj (op X))) := begin refine add_equiv.to_AddCommGroup_iso _, refine add_equiv.ulift.trans _, refine add_equiv.mk _ _ _ _ _, { refine normed_add_group_hom.completion _, refine locally_constant.map_hom _, refine { bound' := ⟨1, λ v, _⟩, .. add_equiv.ulift.symm }, rw one_mul, exact le_rfl }, { refine uniform_space.completion.map _, refine locally_constant.map_hom _, refine { bound' := ⟨1, λ v, _⟩, .. add_equiv.ulift }, rw one_mul, exact le_rfl }, { erw [function.left_inverse_iff_comp, uniform_space.completion.map_comp], { have : ulift.down.{u+1} ∘ ulift.up.{u+1} = (id : V → V) := rfl, erw [locally_constant.map_comp, this, locally_constant.map_id, uniform_space.completion.map_id] }, { apply normed_add_group_hom.uniform_continuous, }, { apply normed_add_group_hom.uniform_continuous, } }, { erw [function.right_inverse_iff_comp, uniform_space.completion.map_comp], { have : ulift.up.{u+1 u} ∘ ulift.down.{u+1} = @id (ulift V) := by { ext v, refl }, erw [locally_constant.map_comp, this, locally_constant.map_id, uniform_space.completion.map_id] }, { apply normed_add_group_hom.uniform_continuous, }, { apply normed_add_group_hom.uniform_continuous, } }, { intros x y, apply map_add, } end . attribute [simps] equiv.ulift add_equiv.ulift lemma SemiNormedGroup.forget₂_Ab_map {V W : SemiNormedGroup} (f : V ⟶ W) : (forget₂ SemiNormedGroup Ab).map f = f.to_add_monoid_hom := rfl lemma SemiNormedGroup.forget₂_Ab_obj (V : SemiNormedGroup) : (forget₂ SemiNormedGroup Ab).obj V = AddCommGroup.of V := rfl set_option pp.universes true --jmc: is this helpful?? @[reassoc] lemma ExtQprime_iso_aux_system_obj_aux'_natural (X Y : Profinite.{u}) (f : X ⟶ Y) : (ExtQprime_iso_aux_system_obj_aux' V Y).hom ≫ (forget₂ _ _).map (SemiNormedGroup.Completion.map ((SemiNormedGroup.LocallyConstant.obj _).map f.op)) = Ab.ulift.map ((forget₂ _ _).map (SemiNormedGroup.Completion.map ((SemiNormedGroup.LocallyConstant.obj _).map f.op))) ≫ (ExtQprime_iso_aux_system_obj_aux' V X).hom := begin ext1 ⟨φ⟩, simp only [comp_apply], dsimp only [ExtQprime_iso_aux_system_obj_aux', add_equiv.to_AddCommGroup_iso, add_equiv.trans_apply, add_equiv.coe_to_add_monoid_hom, add_equiv.coe_mk, Ab.ulift_map_apply, SemiNormedGroup.forget₂_Ab_map, SemiNormedGroup.forget₂_Ab_obj, AddCommGroup.coe_of], apply uniform_space.completion.induction_on φ; clear φ, { refine @is_closed_eq _ _ _ _ (id _) _ _ _ _, { dsimp [SemiNormedGroup.Completion_obj, SemiNormedGroup.LocallyConstant_obj_obj], apply_instance }, { apply uniform_space.completion.continuous_map.comp uniform_space.completion.continuous_map }, { apply uniform_space.completion.continuous_map.comp, dsimp only [Ab.ulift, add_monoid_hom.coe_mk, add_equiv.ulift_apply, equiv.to_fun_as_coe, equiv.ulift_apply], apply uniform_space.completion.continuous_map } }, { intros φ, dsimp only [Ab.ulift, add_monoid_hom.coe_mk, add_equiv.ulift_apply, equiv.to_fun_as_coe, equiv.ulift_apply, SemiNormedGroup.LocallyConstant_obj_map, SemiNormedGroup.Completion_map], erw [normed_add_group_hom.completion_coe, normed_add_group_hom.completion_coe, normed_add_group_hom.completion_coe, normed_add_group_hom.completion_coe], congr' 1, dsimp only [locally_constant.comap_hom_apply, locally_constant.map_hom_apply], erw [locally_constant.comap_map], exact f.continuous, } end . open category_theory.preadditive lemma FreeAb_naturality_helper {C 𝓐 : Type*} [category C] [category 𝓐] [preadditive 𝓐] (F G : FreeAb C ⥤ 𝓐) [F.additive] [G.additive] (η : ∀ X : FreeAb C, F.obj X ⟶ G.obj X) (hη : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), F.map ((FreeAb.of_functor _).map f) ≫ η _ = η _ ≫ G.map ((FreeAb.of_functor _).map f)) {X Y : FreeAb C} (f : X ⟶ Y) : F.map f ≫ η Y = η X ≫ G.map f := begin change right_comp _ (η Y) (F.map_add_hom f) = left_comp _ (η X) (G.map_add_hom f), rw [← add_monoid_hom.comp_apply, ← add_monoid_hom.comp_apply], congr' 1, clear f, ext1 f, cases X, cases Y, exact hη f, end lemma ExtQprime_iso_aux_system_obj_aux_aux (X Y : Profinite.{u}) (f : X ⟶ Y) : (LCC_iso_Cond_of_top_ab.{u} V).inv.app (op.{u+2} Y) ≫ (forget₂.{u+1 u+1 u u u} SemiNormedGroup.{u} Ab.{u}).map (SemiNormedGroup.Completion.{u}.map ((SemiNormedGroup.LocallyConstant.{u u}.obj V).map f.op)) = (Condensed.of_top_ab.presheaf _).map f.op ≫ (LCC_iso_Cond_of_top_ab V).inv.app (op X) := begin simp only [← nat_iso.app_inv, iso.inv_comp_eq], simp only [← category.assoc, iso.eq_comp_inv], ext1 t, dsimp [forget₂, has_forget₂.forget₂, LCC_iso_Cond_of_top_ab, LCC_iso_Cond_of_top_ab_add_equiv] at t ⊢, simp only [comp_apply, normed_add_group_hom.coe_to_add_monoid_hom, add_equiv.coe_to_add_monoid_hom, add_equiv.coe_mk], dsimp only [Condensed.of_top_ab.presheaf, add_monoid_hom.mk'_apply], ext x, simp only [continuous_map.comp_apply], apply uniform_space.completion.induction_on t; clear t, { refine is_closed_eq _ _, { have h1 : continuous (λ q : C(X,V), q x) := continuous_map.continuous_eval_const.{u u} x, have h2 : continuous (uniform_space.completion.extension.{u u} locally_constant.to_continuous_map.{u u}) := uniform_space.completion.continuous_extension, have h3 := (locally_constant.comap_hom.{u u u} f f.continuous).completion.continuous, refine (h1.comp h2).comp h3, apply_instance }, { let t := _, change continuous t, have ht : t = _ ∘ uniform_space.completion.extension (locally_constant.to_continuous_map.{u u}), rotate 2, { intros q, exact q (f x) }, { refl }, rw ht, clear ht t, apply continuous.comp, exact continuous_map.continuous_eval_const.{u u} (f x), exact uniform_space.completion.continuous_extension.{u u} } }, { intros a, simp only [normed_add_group_hom.completion_coe, locally_constant.comap_hom_apply, quiver.hom.unop_op], erw [uniform_space.completion.extension_coe], erw [uniform_space.completion.extension_coe], unfold locally_constant.comap, classical, erw dif_pos, refl, exact f.continuous, exact locally_constant.to_continuous_map_uniform_continuous.{u} Y ↥V, exact locally_constant.to_continuous_map_uniform_continuous.{u} X ↥V }, end def ExtQprime_iso_aux_system_obj_aux : ((CLC (SemiNormedGroup.ulift.{u+1}.obj V)).right_op.map_FreeAb ⋙ FreeAb.eval SemiNormedGroupᵒᵖ) ⋙ (forget₂ SemiNormedGroup Ab).op ≅ (freeCond.map_FreeAb ⋙ FreeAb.eval (Condensed.{u} Ab.{u+1})) ⋙ (preadditive_yoneda.obj V.to_Cond).right_op := begin refine nat_iso.of_components _ _, { intro X, dsimp only [functor.comp_obj, functor.right_op, functor.op_obj, FreeAb.eval, functor.map_FreeAb], refine iso.op _, refine (preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab _ _) ≪≫ _, let e := (Condensed_Ab_to_presheaf.map_iso (Condensed_LCC_iso_of_top_ab V)).app (op X.as), refine e.symm ≪≫ (ExtQprime_iso_aux_system_obj_aux' V X.as), }, { intros X Y f, apply FreeAb_naturality_helper, clear f X Y, intros X Y f, dsimp only [id.def, iso.trans_hom, iso.op_hom, op_comp, iso.symm_hom, functor.map_iso_inv, functor.comp_map, functor.right_op_map, functor.op_map, iso.app_inv, FreeAb.eval, functor.map_FreeAb, FreeAb.of_functor], simp only [category.assoc, ← op_comp], congr' 1, simp only [free_abelian_group.map_of_apply, free_abelian_group.lift.of, id.def, functor.right_op_map, quiver.hom.unop_op], erw ← preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_natural'_assoc, congr' 1, dsimp [Condensed_LCC_iso_of_top_ab], erw ExtQprime_iso_aux_system_obj_aux'_natural, simp only [← category.assoc], congr' 1, rw ← Ab.ulift.map_comp, rw ExtQprime_iso_aux_system_obj_aux_aux, ext, refl } end /-- Hom(X,A) -/ def hom_complex_int (X : homological_complex (Condensed.{u} Ab.{u+1}) (complex_shape.up ℤ)) (A : Condensed.{u} Ab.{u+1}) : homological_complex Ab.{u+1} (complex_shape.up ℤ).symm := (((preadditive_yoneda.obj A).map_homological_complex _).obj X.op) def hom_complex_nat (X : homological_complex (Condensed.{u} Ab.{u+1}) (complex_shape.down ℕ)) (A : Condensed.{u} Ab.{u+1}) : homological_complex Ab.{u+1} (complex_shape.down ℕ).symm := (((preadditive_yoneda.obj A).map_homological_complex _).obj X.op) def embed_hom_complex_nat_iso (X : homological_complex (Condensed.{u} Ab.{u+1}) (complex_shape.down ℕ)) (A : Condensed.{u} Ab.{u+1}) : hom_complex_int ((homological_complex.embed complex_shape.embedding.nat_down_int_up).obj X) A ≅ (homological_complex.embed complex_shape.embedding.nat_up_int_down).obj (hom_complex_nat X A) := homological_complex.hom.iso_of_components (λ i, match i with | int.of_nat 0 := iso.refl _ | int.of_nat (i+1) := is_zero.iso (functor.map_is_zero _ (is_zero_zero _).op) (is_zero_zero _) | -[1+i] := iso.refl _ end) begin rintro i (j|(_|j)) (rfl : _ = _), { apply is_zero.eq_of_src, refine functor.map_is_zero _ _, dsimp, apply is_zero.op, exact is_zero_zero _ }, { refine (category.id_comp _).trans (category.comp_id _).symm, }, { refine (category.id_comp _).trans (category.comp_id _).symm, }, end /- lemma embed_hom_complex_nat_iso_homology_iso (X : homological_complex (Condensed.{u} Ab.{u+1}) (complex_shape.down ℕ)) (A : Condensed.{u} Ab.{u+1}) (n : ℕ) : (homology_functor _ _ (-(n : ℤ))).map (embed_hom_complex_nat_iso X A).hom ≫ (homological_complex.homology_embed_nat_iso _ complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-(n : ℤ)) (by { cases n; refl })).app _ = _ -/ /- -- OLD construction of ExtQprime_iso_aux_system_obj begin refine (homology_functor _ _ (-n:ℤ)).map_iso _ ≪≫ _, { let C := ((preadditive_yoneda.obj V.to_Cond).right_op.map_homological_complex _).obj (((QprimeFP_nat r' BD κ M).obj c)), exact ((homological_complex.embed complex_shape.embedding.nat_up_int_down).obj C.unop), }, { refine _ ≪≫ embed_unop.app (op (((preadditive_yoneda_obj V.to_Cond ⋙ forget₂ _ _).right_op.map_homological_complex (complex_shape.down ℕ)).obj ((QprimeFP_nat r' BD κ M).obj c))), dsimp, refine (homological_complex.unop_functor.right_op.map_iso _).unop, symmetry, refine (map_homological_complex_embed _).app _, }, refine (homological_complex.homology_embed_nat_iso _ complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-n) (by { cases n; refl })).app _ ≪≫ (homology_functor _ _ _).map_iso _, refine hom_complex_QprimeFP_nat_iso_aux_system r' BD κ M V c end -/ def hom_complex_QprimeFP_nat_iso_aux_system (c : ℝ≥0) : hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD κ M).obj c) V.to_Cond ≅ (aux_system.{u u+1} r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) κ).to_Ab.obj (op.{1} c) := begin refine _ ≪≫ forget₂_unop.app _, let φ : op (((preadditive_yoneda.obj V.to_Cond).right_op.map_homological_complex (complex_shape.down ℕ)).obj ((QprimeFP_nat r' BD κ M).obj c)) ≅ _ := _, refine homological_complex.unop_functor.map_iso φ, refine ((category_theory.nat_iso.map_homological_complex (ExtQprime_iso_aux_system_obj_aux V) _).app ((breen_deligne.FPsystem r' BD _ κ).obj c)).op, end def ExtQprime_iso_aux_system_obj (c : ℝ≥0) (n : ℕ) : ((Ext n).obj (op $ (QprimeFP r' BD κ M).obj c)).obj ((single _ 0).obj V.to_Cond) ≅ ((aux_system r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1}.obj V) κ).to_AbH n).obj (op c) := Ext_compute_with_acyclic _ _ (ExtQprime_iso_aux_system_aux r' BD κ M V c) _ ≪≫ begin refine (homology_functor _ _ (-n:ℤ)).map_iso (embed_hom_complex_nat_iso _ _) ≪≫ _, refine (homological_complex.homology_embed_nat_iso _ complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-n) (by { cases n; refl })).app _ ≪≫ (homology_functor _ _ _).map_iso _, refine hom_complex_QprimeFP_nat_iso_aux_system r' BD κ M V c end attribute [reassoc] Ext_compute_with_acyclic_naturality def cofan_point_iso_colimit {α : Type (u+1)} (X : α → bounded_homotopy_category (Condensed.{u} Ab.{u+1})) [bounded_homotopy_category.uniformly_bounded X] : (bounded_homotopy_category.cofan X).X ≅ ∐ X := (bounded_homotopy_category.is_colimit_cofan X).cocone_point_unique_up_to_iso (colimit.is_colimit _) variables (ι : ulift.{u+1} ℕ → ℝ≥0) (hι : monotone ι) instance sigma_Qprime_int_bounded_above : ((homotopy_category.quotient (Condensed Ab) (complex_shape.up ℤ)).obj (∐ λ (k : ulift ℕ), (QprimeFP_int r' BD κ M).obj (ι k))).is_bounded_above := begin refine ⟨⟨1, _⟩⟩, intros a ha, refine is_zero.of_iso _ (homotopy_category.coproduct_iso _ _), apply category_theory.is_zero_colimit, intro, exact chain_complex.bounded_by_one _ _ ha, end . def coproduct_shift (A : Type u) [category.{v} A] [abelian A] [has_coproducts.{v} A] (X : ulift.{v} ℕ → bounded_homotopy_category A) [uniformly_bounded X] (e : X ⟶ (λ i, X (ulift.up $ ulift.down i + 1))) : ∐ X ⟶ ∐ X := begin apply sigma.desc, intros i, refine _ ≫ sigma.ι _ (ulift.up $ ulift.down i + 1), refine e _, end @[reassoc] lemma Ext_coproduct_iso_naturality_shift (A : Type u) [category.{v} A] [abelian A] [enough_projectives A] [has_coproducts.{v} A] [AB4 A] (X : ulift.{v} ℕ → bounded_homotopy_category A) [uniformly_bounded X] (e : X ⟶ (λ i, X (ulift.up $ ulift.down i + 1))) (i : ℤ) (Y) : ((Ext i).map (coproduct_shift _ X e).op).app Y ≫ (Ext_coproduct_iso X _ _).hom = (Ext_coproduct_iso _ _ _).hom ≫ pi.lift (λ j, pi.π _ (ulift.up (ulift.down j + 1)) ≫ ((Ext i).map (e _).op).app Y) := begin dsimp only [Ext_coproduct_iso, Ext, Ext0, Ext_iso, functor.comp_map, whiskering_left, whisker_left, iso.trans_hom, functor.map_iso, preadditive_yoneda_coproduct_iso, functor.flip, pi_iso, as_iso, preadditive_yoneda_coproduct_to_product], simp only [category.assoc], simp only [quiver.hom.unop_op, iso.op_hom, replacement_iso_hom, iso.op_inv, replacement_iso_inv, iso.symm_mk], apply limit.hom_ext, intros j, simp only [category.assoc, limit.lift_π, fan.mk_π_app, limit.lift_π_assoc], simp only [← functor.map_comp, ← op_comp], congr' 2, simp only [category.assoc], apply lift_ext (∐ X).π, swap, apply_instance, dsimp [quiver.hom.unop_op], simp only [category.assoc, lift_lifts, lift_lifts_assoc], dsimp [uniform_π, coproduct_shift], simp only [colimit.ι_desc_assoc, cofan.mk_ι_app, category.assoc, colimit.ι_desc, lift_lifts_assoc], end