(* Title: BDD Author: Veronika Ortner and Norbert Schirmer, 2004 Maintainer: Norbert Schirmer, norbert.schirmer at web de License: LGPL *) (* ShareRepProof.thy Copyright (C) 2004-2008 Veronika Ortner and Norbert Schirmer Some rights reserved, TU Muenchen This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) section \Proof of Procedure ShareRep\ theory ShareRepProof imports ProcedureSpecs Simpl.HeapList begin lemma (in ShareRep_impl) ShareRep_modifies: shows "\\. \\{\} PROC ShareRep (\nodeslist, \p) {t. t may_only_modify_globals \ in [rep]}" apply (hoare_rule HoarePartial.ProcRec1) apply (vcg spec=modifies) done lemma hd_filter_cons: "\ i. \ P (xs ! i) p; i < length xs; \ no \ set (take i xs). \ P no p; \ a b. P a b = P b a\ \ xs ! i = hd (filter (P p) xs)" apply (induct xs) apply simp apply (case_tac "P a p") apply simp apply (case_tac i) apply simp apply simp apply (case_tac i) apply simp apply auto done lemma (in ShareRep_impl) ShareRep_spec_total: shows "\\ ns. \,\\\<^sub>t \\. List \nodeslist \next ns \ (\no \ set ns. no \ Null \ ((no\\low = Null) = (no\\high = Null)) \ (isLeaf_pt \p \low \high \ isLeaf_pt no \low \high) \ no\\var = \p\\var) \ \p \ set ns\ PROC ShareRep (\nodeslist, \p) \ (\<^bsup>\\<^esup>p \ \rep = hd (filter (\ sn. repNodes_eq sn \<^bsup>\\<^esup>p \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high \<^bsup>\\<^esup>rep) ns)) \ (\pt. pt \ \<^bsup>\\<^esup>p \ pt\\<^bsup>\\<^esup>rep = pt\\rep) \ (\<^bsup>\\<^esup>p\\rep\\<^bsup>\\<^esup>var = \<^bsup>\\<^esup>p \ \<^bsup>\\<^esup>var)\" apply (hoare_rule HoareTotal.ProcNoRec1) apply (hoare_rule anno= "IF (isLeaf_pt \p \low \high) THEN \p \ \rep :== \nodeslist ELSE WHILE (\nodeslist \ Null) INV \\prx sfx. List \nodeslist \next sfx \ ns=prx@sfx \ \ isLeaf_pt \p \low \high \ (\no \ set ns. no \ Null \ ((no\\<^bsup>\\<^esup>low = Null) = (no\\<^bsup>\\<^esup>high = Null)) \ (isLeaf_pt \<^bsup>\\<^esup>p \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high \ isLeaf_pt no \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high) \ no\\<^bsup>\\<^esup>var = \<^bsup>\\<^esup>p\\<^bsup>\\<^esup>var) \ \<^bsup>\\<^esup>p \ set ns \ ((\pt \ set prx. repNodes_eq pt \<^bsup>\\<^esup>p \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high \<^bsup>\\<^esup>rep) \ \rep \<^bsup>\\<^esup>p = hd (filter (\ sn. repNodes_eq sn \<^bsup>\\<^esup>p \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high \<^bsup>\\<^esup>rep) prx) \ (\pt. pt \ \<^bsup>\\<^esup>p \ pt\\<^bsup>\\<^esup>rep = pt\\rep)) \ ((\pt \ set prx. \ repNodes_eq pt \<^bsup>\\<^esup>p \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high \<^bsup>\\<^esup>rep) \ \<^bsup>\\<^esup>rep = \rep) \ (\nodeslist \ Null \ (\pt \ set prx. \ repNodes_eq pt \<^bsup>\\<^esup>p \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high \<^bsup>\\<^esup>rep)) \ (\p = \<^bsup>\\<^esup>p \ \high = \<^bsup>\\<^esup>high \ \low = \<^bsup>\\<^esup>low)\ VAR MEASURE (length (list \nodeslist \next)) DO IF (repNodes_eq \nodeslist \p \low \high \rep) THEN \p\\rep :== \nodeslist;; \nodeslist :== Null ELSE \nodeslist :== \nodeslist\\next FI OD FI" in HoareTotal.annotateI) apply vcg using [[simp_depth_limit = 2]] apply (rule conjI) apply clarify apply (simp (no_asm_use)) prefer 2 apply clarify apply (rule_tac x="[]" in exI) apply (rule_tac x=ns in exI) apply (simp (no_asm_use)) prefer 2 apply clarify apply (rule conjI) apply clarify apply (rule conjI) apply (clarsimp simp add: List_list) (* solving termination contraint *) apply (simp (no_asm_use)) apply (rule conjI) apply assumption prefer 2 apply clarify apply (simp (no_asm_use)) apply (rule conjI) apply (clarsimp simp add: List_list) (* solving termination constraint *) apply (simp only: List_not_Null simp_thms triv_forall_equality) apply clarify apply (simp only: triv_forall_equality) apply (rename_tac sfx) apply (rule_tac x="prx@[nodeslist]" in exI) apply (rule_tac x="sfx" in exI) apply (rule conjI) apply assumption apply (rule conjI) apply simp prefer 4 apply (elim exE conjE) apply (simp (no_asm_use)) apply hypsubst using [[simp_depth_limit = 100]] proof - (* IF-THEN to postcondition *) fix ns var low high rep "next" p nodeslist assume ns: "List nodeslist next ns" assume no_prop: "\no\set ns. no \ Null \ (low no = Null) = (high no = Null) \ (isLeaf_pt p low high \ isLeaf_pt no low high) \ var no = var p" assume p_in_ns: "p \ set ns" assume p_Leaf: "isLeaf_pt p low high" show "nodeslist = hd [sn\ns . repNodes_eq sn p low high rep] \ var nodeslist = var p" proof - from p_in_ns no_prop have p_not_Null: "p\Null" using [[simp_depth_limit=2]] by auto from p_in_ns have "ns \ []" by (cases ns) auto with ns obtain ns' where ns': "ns = nodeslist#ns'" by (cases "nodeslist=Null") auto with no_prop p_Leaf obtain "isLeaf_pt nodeslist low high" and var_eq: "var nodeslist = var p" and "nodeslist\Null" using [[simp_depth_limit=2]] by auto with p_not_Null p_Leaf have "repNodes_eq nodeslist p low high rep" by (simp add: repNodes_eq_def isLeaf_pt_def null_comp_def) with ns' var_eq show ?thesis by simp qed next (* From invariant to postcondition *) fix var::"ref\nat" and low high rep repa p prx sfx "next" assume sfx: "List Null next sfx" assume p_in_ns: "p \ set (prx @ sfx)" assume no_props: "\no\set (prx @ sfx). no \ Null \ (low no = Null) = (high no = Null) \ (isLeaf_pt p low high \ isLeaf_pt no low high) \ var no = var p" assume match_prx: "(\pt\set prx. repNodes_eq pt p low high rep) \ repa p = hd [sn\prx . repNodes_eq sn p low high rep] \ (\pt. pt \ p \ rep pt = repa pt)" show "repa p = hd [sn\prx @ sfx . repNodes_eq sn p low high rep] \ (\pt. pt \ p \ rep pt = repa pt) \ var (repa p) = var p" proof - from sfx have sfx_Nil: "sfx=[]" by simp with p_in_ns have ex_match: "(\pt\set prx. repNodes_eq pt p low high rep)" apply - apply (rule_tac x=p in bexI) apply (simp add: repNodes_eq_def) apply simp done hence not_empty: "[sn\prx . repNodes_eq sn p low high rep] \ []" apply - apply (erule bexE) apply (rule filter_not_empty) apply auto done from ex_match match_prx obtain found: "repa p = hd [sn\prx . repNodes_eq sn p low high rep]" and unmodif: "\pt. pt \ p \ rep pt = repa pt" by blast from hd_filter_in_list [OF not_empty] found have "repa p \ set prx" by simp with no_props have "var (repa p) = var p" using [[simp_depth_limit=2]] by simp with found unmodif sfx_Nil show ?thesis by simp qed next (* Invariant to invariant; ELSE part *) fix var low high p repa "next" nodeslist prx sfx assume nodeslist_not_Null: "nodeslist \ Null" assume p_no_Leaf: "\ isLeaf_pt p low high" assume no_props: "\no\set prx \ set (nodeslist # sfx). no \ Null \ (low no = Null) = (high no = Null) \ var no = var p" assume p_in_ns: "p \ set prx \ p \ set (nodeslist # sfx)" assume match_prx: "(\pt\set prx. repNodes_eq pt p low high repa) \ repa p = hd [sn\prx . repNodes_eq sn p low high repa]" assume nomatch_prx: "\pt\set prx. \ repNodes_eq pt p low high repa" assume nomatch_nodeslist: "\ repNodes_eq nodeslist p low high repa" assume sfx: "List (next nodeslist) next sfx" show "(\no\set prx \ set (nodeslist # sfx). no \ Null \ (low no = Null) = (high no = Null) \ var no = var p) \ ((\pt\set (prx @ [nodeslist]). repNodes_eq pt p low high repa) \ repa p = hd [sn\prx @ [nodeslist] . repNodes_eq sn p low high repa]) \ (next nodeslist \ Null \ (\pt\set (prx @ [nodeslist]). \ repNodes_eq pt p low high repa))" proof - from nomatch_prx nomatch_nodeslist have "((\pt\set (prx @ [nodeslist]). repNodes_eq pt p low high repa) \ repa p = hd [sn\prx @ [nodeslist] . repNodes_eq sn p low high repa])" by auto moreover from nomatch_prx nomatch_nodeslist have "(next nodeslist \ Null \ (\pt\set (prx @ [nodeslist]). \ repNodes_eq pt p low high repa))" by auto ultimately show ?thesis using no_props by (intro conjI) qed next (* Invariant to invariant: THEN part *) fix var low high p repa "next" nodeslist prx sfx assume nodeslist_not_Null: "nodeslist \ Null" assume sfx: "List nodeslist next sfx" assume p_not_Leaf: "\ isLeaf_pt p low high" assume no_props: "\no\set prx \ set sfx. no \ Null \ (low no = Null) = (high no = Null) \ (isLeaf_pt p low high \ isLeaf_pt no low high) \ var no = var p" assume p_in_ns: "p \ set prx \ p \ set sfx" assume match_prx: "(\pt\set prx. repNodes_eq pt p low high repa) \ repa p = hd [sn\prx . repNodes_eq sn p low high repa]" assume nomatch_prx: "\pt\set prx. \ repNodes_eq pt p low high repa" assume match: "repNodes_eq nodeslist p low high repa" show "(\no\set prx \ set sfx. no \ Null \ (low no = Null) = (high no = Null) \ (isLeaf_pt p low high \ isLeaf_pt no low high) \ var no = var p) \ (p \ set prx \ p \ set sfx) \ ((\pt\set prx \ set sfx. repNodes_eq pt p low high repa) \ nodeslist = hd ([sn\prx . repNodes_eq sn p low high repa] @ [sn\sfx . repNodes_eq sn p low high repa])) \ ((\pt\set prx \ set sfx. \ repNodes_eq pt p low high repa) \ repa = repa(p := nodeslist))" proof - from nodeslist_not_Null sfx obtain sfx' where sfx': "sfx=nodeslist#sfx'" by (cases "nodeslist=Null") auto from nomatch_prx match sfx' have hd: "hd ([sn\prx . repNodes_eq sn p low high repa] @ [sn\sfx . repNodes_eq sn p low high repa]) = nodeslist" by simp from match sfx' have triv: "((\pt\set prx \ set sfx. \ repNodes_eq pt p low high repa) \ repa = repa(p := nodeslist))" by simp show ?thesis apply (rule conjI) apply (rule no_props) apply (intro conjI) apply (rule p_in_ns) apply (simp add: hd) apply (rule triv) done qed qed end