(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) Require Reals. From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum finmap matrix. From mathcomp Require Import interval zmodp. Require Import boolp ereal reals. Require Import Rstruct classical_sets signed topology normedtype. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GRing.Theory Num.Def Num.Theory. Local Open Scope classical_set_scope. (** For Pierre-Yves : definition of sums *) From mathcomp Require fintype bigop finmap. Section totally. Import fintype bigop finmap. Local Open Scope fset_scope. (* :TODO: when eventually is generalized to any lattice *) (* totally can just be replaced by eventually *) Definition totally {I : choiceType} : set (set {fset I}) := filter_from setT (fun A => [set B | A `<=` B]). Canonical totally_filter_source {I : choiceType} X := @Filtered.Source X _ {fset I} (fun f => f @ totally). Instance totally_filter {I : choiceType} : ProperFilter (@totally I). Proof. eapply filter_from_proper; last by move=> A _; exists A; rewrite /= fsubset_refl. apply: filter_fromT_filter; first by exists fset0. by move=> A B /=; exists (A `|` B) => P /=; rewrite fsubUset => /andP[]. Qed. Definition partial_sum {I : choiceType} {R : zmodType} (x : I -> R) (A : {fset I}) : R := \sum_(i : A) x (val i). Definition sum (I : choiceType) {K : numDomainType} {R : normedModType K} (x : I -> R) : R := lim (partial_sum x). Definition summable (I : choiceType) {K : realType} {R : normedModType K} (x : I -> R) := \forall M \near +oo%R, \forall J \near totally, (partial_sum (fun i => `|x i|) J <= M)%R. End totally.