From mathcomp Require Import all_ssreflect fingroup ssralg poly ssrnum. Require Import signed. (******************************************************************************) (* This file equips the product of two normedZmodTypes with a canonical *) (* normedZmodType structure. It is a short file that has been added here for *) (* convenience during the rebase of MathComp-Analysis on top of MathComp 1.1. *) (* The contents is likely to be moved elsewhere. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Import Order.TTheory GRing.Theory Num.Theory. Module ProdNormedZmodule. Section ProdNormedZmodule. Context {R : numDomainType} {U V : normedZmodType R}. Definition norm (x : U * V) : R := Num.max `|x.1| `|x.2|. Lemma normD x y : norm (x + y) <= norm x + norm y. Proof. rewrite /norm num_le_maxl !(le_trans (ler_norm_add _ _)) ?ler_add//; by rewrite comparable_le_maxr ?lexx ?orbT// real_comparable. Qed. Lemma norm_eq0 x : norm x = 0 -> x = 0. Proof. case: x => x1 x2 /eqP; rewrite eq_le num_le_maxl 2!normr_le0 -andbA/=. by case/and3P => /eqP -> /eqP ->. Qed. Lemma normMn x n : norm (x *+ n) = (norm x) *+ n. Proof. by rewrite /norm pairMnE -mulr_natl maxr_pmulr ?mulr_natl ?normrMn. Qed. Lemma normrN x : norm (- x) = norm x. Proof. by rewrite /norm/= !normrN. Qed. Definition normedZmodMixin : @Num.normed_mixin_of R [zmodType of U * V] (Num.NumDomain.class R) := @Num.NormedMixin _ _ _ norm normD norm_eq0 normMn normrN. Canonical normedZmodType := NormedZmodType R (U * V) normedZmodMixin. Lemma prod_normE (x : normedZmodType) : `|x| = Num.max `|x.1| `|x.2|. Proof. by []. Qed. End ProdNormedZmodule. Module Exports. Canonical normedZmodType. Definition prod_normE := @prod_normE. End Exports. End ProdNormedZmodule. Export ProdNormedZmodule.Exports.