(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) From HB Require Import structures. From mathcomp Require Import all_ssreflect. From mathcomp Require Import ssralg ssrnum ssrint interval finmap. Require Import mathcomp_extra boolp classical_sets signed functions cardinality. Require Import reals ereal topology normedtype sequences. (******************************************************************************) (* This file provides definitions and lemmas about numerical functions. *) (* *) (* f ^\+ == the function formed by the non-negative outputs *) (* of f (from a type to the type of extended real *) (* numbers) and 0 otherwise *) (* rendered as f ⁺ with company-coq (U+207A) *) (* f ^\- == the function formed by the non-positive outputs *) (* of f and 0 o.w. *) (* rendered as f ⁻ with company-coq (U+207B) *) (* \1_ A == indicator function 1_A *) (* *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import Order.TTheory GRing.Theory Num.Def Num.Theory. Import numFieldTopology.Exports. Local Open Scope classical_set_scope. Local Open Scope ring_scope. Reserved Notation "f ^\+" (at level 1, format "f ^\+"). Reserved Notation "f ^\-" (at level 1, format "f ^\-"). Section restrict_lemmas. Context {aT : Type} {rT : numFieldType}. Implicit Types (f g : aT -> rT) (D : set aT). Lemma restrict_set0 f : f \_ set0 = cst 0. Proof. by rewrite patch_set0. Qed. Lemma restrict_ge0 D f : (forall x, D x -> 0 <= f x) -> forall x, 0 <= (f \_ D) x. Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. Lemma ler_restrict D f g : (forall x, D x -> f x <= g x) -> forall x, (f \_ D) x <= (g \_ D) x. Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. End restrict_lemmas. Lemma erestrict_ge0 {aT} {rT : numFieldType} (D : set aT) (f : aT -> \bar rT) : (forall x, D x -> (0 <= f x)%E) -> forall x, (0 <= (f \_ D) x)%E. Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. Lemma lee_restrict {aT} {rT : numFieldType} (D : set aT) (f g : aT -> \bar rT) : (forall x, D x -> f x <= g x)%E -> forall x, ((f \_ D) x <= (g \_ D) x)%E. Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. Lemma restrict_lee {aT} {rT : numFieldType} (D E : set aT) (f : aT -> \bar rT) : (forall x, E x -> 0 <= f x)%E -> D `<=` E -> forall x, ((f \_ D) x <= (f \_ E) x)%E. Proof. move=> f0 ED x; rewrite /restrict; case: ifPn => [xD|xD]. by rewrite mem_set//; apply: ED; rewrite in_setE in xD. by case: ifPn => // xE; apply: f0; rewrite in_setE in xE. Qed. Section erestrict_lemmas. Local Open Scope ereal_scope. Variables (T : Type) (R : realDomainType) (D : set T). Implicit Types (f g : T -> \bar R) (r : R). Lemma erestrict_set0 f : f \_ set0 = cst 0. Proof. by rewrite patch_set0. Qed. Lemma erestrict0 : (cst 0 : T -> \bar R) \_ D = cst 0. Proof. by apply/funext => x; rewrite /patch/=; case: ifP. Qed. Lemma erestrictD f g : (f \+ g) \_ D = f \_ D \+ g \_ D. Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?adde0. Qed. Lemma erestrictN f : (\- f) \_ D = \- f \_ D. Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?oppe0. Qed. Lemma erestrictB f g : (f \- g) \_ D = f \_ D \- g \_ D. Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?sube0. Qed. Lemma erestrictM f g : (f \* g) \_ D = f \_ D \* g \_ D. Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed. Lemma erestrict_scale k f : (fun x => k%:E * f x) \_ D = (fun x => k%:E * (f \_ D) x). Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed. End erestrict_lemmas. Section funposneg. Local Open Scope ereal_scope. Definition funepos T (R : realDomainType) (f : T -> \bar R) := fun x => maxe (f x) 0. Definition funeneg T (R : realDomainType) (f : T -> \bar R) := fun x => maxe (- f x) 0. End funposneg. Notation "f ^\+" := (funepos f) : ereal_scope. Notation "f ^\-" := (funeneg f) : ereal_scope. Section funposneg_lemmas. Local Open Scope ereal_scope. Variables (T : Type) (R : realDomainType) (D : set T). Implicit Types (f g : T -> \bar R) (r : R). Lemma funepos_ge0 f x : 0 <= f^\+ x. Proof. by rewrite /funepos /= le_maxr lexx orbT. Qed. Lemma funeneg_ge0 f x : 0 <= f^\- x. Proof. by rewrite /funeneg le_maxr lexx orbT. Qed. Lemma funeposN f : (\- f)^\+ = f^\-. Proof. exact/funext. Qed. Lemma funenegN f : (\- f)^\- = f^\+. Proof. by apply/funext => x; rewrite /funeneg oppeK. Qed. Lemma funepos_restrict f : (f \_ D)^\+ = (f^\+) \_ D. Proof. by apply/funext => x; rewrite /patch/_^\+; case: ifP; rewrite //= maxxx. Qed. Lemma funeneg_restrict f : (f \_ D)^\- = (f^\-) \_ D. Proof. by apply/funext => x; rewrite /patch/_^\-; case: ifP; rewrite //= oppr0 maxxx. Qed. Lemma ge0_funeposE f : (forall x, D x -> 0 <= f x) -> {in D, f^\+ =1 f}. Proof. by move=> f0 x; rewrite inE => Dx; apply/max_idPl/f0. Qed. Lemma ge0_funenegE f : (forall x, D x -> 0 <= f x) -> {in D, f^\- =1 cst 0}. Proof. by move=> f0 x; rewrite inE => Dx; apply/max_idPr; rewrite lee_oppl oppe0 f0. Qed. Lemma le0_funeposE f : (forall x, D x -> f x <= 0) -> {in D, f^\+ =1 cst 0}. Proof. by move=> f0 x; rewrite inE => Dx; exact/max_idPr/f0. Qed. Lemma le0_funenegE f : (forall x, D x -> f x <= 0) -> {in D, f^\- =1 \- f}. Proof. by move=> f0 x; rewrite inE => Dx; apply/max_idPl; rewrite lee_oppr oppe0 f0. Qed. Lemma gt0_funeposM r f : (0 < r)%R -> (fun x => r%:E * f x)^\+ = (fun x => r%:E * (f^\+ x)). Proof. by move=> ?; rewrite funeqE => x; rewrite /funepos maxeMr// mule0. Qed. Lemma gt0_funenegM r f : (0 < r)%R -> (fun x => r%:E * f x)^\- = (fun x => r%:E * (f^\- x)). Proof. by move=> r0; rewrite funeqE => x; rewrite /funeneg -muleN maxeMr// mule0. Qed. Lemma lt0_funeposM r f : (r < 0)%R -> (fun x => r%:E * f x)^\+ = (fun x => - r%:E * (f^\- x)). Proof. move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe. by rewrite funeposN gt0_funenegM -1?ltr_oppr ?oppr0. Qed. Lemma lt0_funenegM r f : (r < 0)%R -> (fun x => r%:E * f x)^\- = (fun x => - r%:E * (f^\+ x)). Proof. move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe. by rewrite funenegN gt0_funeposM -1?ltr_oppr ?oppr0. Qed. Lemma fune_abse f : abse \o f = f^\+ \+ f^\-. Proof. rewrite funeqE => x /=; have [fx0|/ltW fx0] := leP (f x) 0. - rewrite lee0_abs// /funepos /funeneg. move/max_idPr : (fx0) => ->; rewrite add0e. by move: fx0; rewrite -{1}oppr0 EFinN lee_oppr => /max_idPl ->. - rewrite gee0_abs// /funepos /funeneg; move/max_idPl : (fx0) => ->. by move: fx0; rewrite -{1}oppr0 EFinN lee_oppl => /max_idPr ->; rewrite adde0. Qed. Lemma funeposneg f : f = (fun x => f^\+ x - f^\- x). Proof. rewrite funeqE => x; rewrite /funepos /funeneg; have [|/ltW] := leP (f x) 0. by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite oppeK add0e. by rewrite -{1}oppe0 -lee_oppl => /max_idPr ->; rewrite sube0. Qed. Lemma add_def_funeposneg f x : (f^\+ x +? - f^\- x). Proof. by rewrite /funeneg /funepos; case: (f x) => [r| |]; [rewrite !maxEFin|rewrite /maxe /= ltNye|rewrite /maxe /= ltNye]. Qed. Lemma funeD_Dpos f g : f \+ g = (f \+ g)^\+ \- (f \+ g)^\-. Proof. apply/funext => x; rewrite /funepos /funeneg; have [|/ltW] := leP 0 (f x + g x). - by rewrite -{1}oppe0 -lee_oppl => /max_idPr ->; rewrite sube0. - by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite oppeK add0e. Qed. Lemma funeD_posD f g : f \+ g = (f^\+ \+ g^\+) \- (f^\- \+ g^\-). Proof. apply/funext => x; rewrite /funepos /funeneg. have [|fx0] := leP 0 (f x); last rewrite add0e. - rewrite -{1}oppe0 lee_oppl => /max_idPr ->; have [|/ltW] := leP 0 (g x). by rewrite -{1}oppe0 lee_oppl => /max_idPr ->; rewrite adde0 sube0. by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite adde0 sub0e oppeK. - move/ltW : (fx0); rewrite -{1}oppe0 lee_oppr => /max_idPl ->. have [|] := leP 0 (g x); last rewrite add0e. by rewrite -{1}oppe0 lee_oppl => /max_idPr ->; rewrite adde0 oppeK addeC. move gg' : (g x) => g'; move: g' gg' => [g' gg' g'0|//|goo _]. + move/ltW : (g'0); rewrite -{1}oppe0 -lee_oppr => /max_idPl => ->. by rewrite oppeD// 2!oppeK. + by rewrite /maxe /=; case: (f x) fx0. Qed. End funposneg_lemmas. #[global] Hint Extern 0 (is_true (0 <= _ ^\+ _)%E) => solve [apply: funepos_ge0] : core. #[global] Hint Extern 0 (is_true (0 <= _ ^\- _)%E) => solve [apply: funeneg_ge0] : core. Definition indic {T} {R : ringType} (A : set T) (x : T) : R := (x \in A)%:R. Reserved Notation "'\1_' A" (at level 8, A at level 2, format "'\1_' A") . Notation "'\1_' A" := (indic A) : ring_scope. Lemma indicE {T} {R : ringType} (A : set T) (x : T) : indic A x = (x \in A)%:R :> R. Proof. by []. Qed. Lemma indicT {T} {R : ringType} : \1_[set: T] = cst (1 : R). Proof. by apply/funext=> x; rewrite indicE in_setT. Qed. Lemma indic0 {T} {R : ringType} : \1_(@set0 T) = cst (0 : R). Proof. by apply/funext=> x; rewrite indicE in_set0. Qed. Lemma indic_restrict {T : pointedType} {R : numFieldType} (A : set T) : \1_A = 1 \_ A :> (T -> R). Proof. by apply/funext => x; rewrite indicE /patch; case: ifP. Qed. Lemma restrict_indic T (R : numFieldType) (E A : set T) : (\1_E \_ A) = \1_(E `&` A) :> (T -> R). Proof. apply/funext => x; rewrite /restrict 2!indicE. case: ifPn => [|] xA; first by rewrite in_setI xA andbT. by rewrite in_setI (negbTE xA) andbF. Qed. Lemma preimage_indic (T : Type) (R : ringType) (D : set T) (B : set R) : \1_D @^-1` B = if 1 \in B then (if 0 \in B then setT else D) else (if 0 \in B then ~` D else set0). Proof. rewrite /preimage/= /indic; apply/seteqP; split => x; case: ifPn => B1; case: ifPn => B0 //=. - have [|] := boolP (x \in D); first by rewrite inE. by rewrite notin_set in B0. - have [|] := boolP (x \in D); last by rewrite notin_set. by rewrite notin_set in B1. - by have [xD|xD] := boolP (x \in D); [rewrite notin_set in B1|rewrite notin_set in B0]. - by have [xD|xD] := boolP (x \in D); [rewrite inE in B1|rewrite inE in B0]. - have [xD|] := boolP (x \in D); last by rewrite notin_set. by rewrite inE in B1. - have [|xD] := boolP (x \in D); first by rewrite inE. by rewrite inE in B0. Qed. Lemma image_indic T (R : ringType) (D A : set T) : \1_D @` A = (if A `\` D != set0 then [set 0] else set0) `|` (if A `&` D != set0 then [set 1 : R] else set0). Proof. rewrite /indic; apply/predeqP => x; split => [[t At /= <-]|]. by rewrite /indic; case: (boolP (t \in D)); rewrite ?(inE, notin_set) => Dt; [right|left]; rewrite ifT//=; apply/set0P; exists t. by move=> []; case: ifPn; rewrite ?negbK// => /set0P[t [At Dt]] ->; exists t => //; case: (boolP (t \in D)); rewrite ?(inE, notin_set). Qed. Lemma image_indic_sub T (R : ringType) (D A : set T) : \1_D @` A `<=` [set (0 : R); 1]. Proof. by rewrite image_indic; do ![case: ifP=> //= _] => // t []//= ->; [left|right]. Qed.