(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) From mathcomp Require Import all_ssreflect all_algebra finmap. Require Import boolp classical_sets mathcomp_extra reals ereal signed. Require Import functions topology normedtype sequences cardinality esum fsbigop. Require Import numfun. From HB Require Import structures. (******************************************************************************) (* Measure Theory *) (* *) (* This files provides a formalization of the basics of measure theory. This *) (* includes the formalization of mathematical structures for measure theory *) (* and of measures, as well as standard theorems such as the Boole *) (* inequality, Caratheodory's theorem, the Hahn extension, etc. *) (* *) (* Main references: *) (* - Daniel Li, Intégration et applications, 2016 *) (* - Achim Klenke, Probability Theory 2nd edition, 2014 *) (* *) (* setI_closed G == the set of sets G is closed under finite *) (* intersection *) (* setU_closed G == the set of sets G is closed under finite union *) (* setC_closed G == the set of sets G is closed under complement *) (* setD_closed G == the set of sets G is closed under difference *) (* ndseq_closed G == the set of sets G is closed under non-decreasing *) (* countable union *) (* trivIset_closed G == the set of sets G is closed under pairwise-disjoint *) (* countable union *) (* *) (* setring G == the set of sets G contains the empty set, is *) (* closed by union, and difference *) (* <> := smallest setring G *) (* sigma_algebra D G == the set of sets G forms a sigma algebra on D *) (* <> == sigma-algebra generated by G on D *) (* := smallest (sigma_algebra D) G *) (* <> := <> *) (* monotone_class D G == G is a monotone class of subsets of D *) (* <> == monotone class generated by G on D *) (* <> := <> *) (* dynkin G == G is a set of sets that form a Dynkin *) (* (or a lambda) system *) (* <> == Dynkin system generated by G, i.e., *) (* smallest dynkin G *) (* *) (* * Mathematical structures for measure theory: *) (* semiRingOfSetsType == the type of semirings of sets; *) (* the carrier is a set of sets A such that *) (* "measurable A" holds; *) (* "measurable A" is printed as "d.-measurable A" *) (* where d is a "display parameter" whose purpose *) (* is to distinguish different measurable's within *) (* the same context *) (* ringOfSetsType == the type of rings of sets *) (* <> is equipped with a canonical structure *) (* of ring of sets *) (* G.-ring.-measurable A == A is measurable for the ring of sets <> *) (* algebraOfSetsType == the type of algebras of sets *) (* measurableType == the type of sigma-algebras *) (* <> is equipped with a canonical structure *) (* of measurableType *) (* G.-sigma.-measurable A == A is measurable for the sigma-algebra <> *) (* *) (* discrete_measurable == the measurableType corresponding to *) (* [set: set nat] *) (* salgebraType G == the measurableType corresponding to <> *) (* *) (* measurable_fun D f == the function f with domain D is measurable *) (* preimage_class D f G == class of the preimages by f of sets in G *) (* image_class D f G == class of the sets with a preimage by f in G *) (* *) (* * Measures: *) (* {additive_measure set T -> \bar R} == type of a function over sets of *) (* elements of type T where R is expected to be a *) (* numFieldType such that this function maps set0 to 0, is *) (* non-negative over measurable sets, and is semi-additive *) (* isAdditiveMeasure == corresponding mixin *) (* AdditiveMeasure == corresponding structure *) (* {measure set T -> \bar R} == type of a function over sets of elements *) (* of type T where R is expected to be a numFieldType such *) (* that this function maps set0 to 0, is non-negative over *) (* measurable sets and is semi-sigma-additive *) (* isMeasure0 == mixin that extends an additive measure to a measure with *) (* the proof that it is semi_sigma_additive *) (* isMeasure == factory corresponding to the type of measures *) (* Measure == structure corresponding to measures *) (* *) (* pushforward f m == pushforward/image measure of m by f *) (* \d_a == Dirac measure *) (* msum mu n == the measure corresponding to the sum of the measures *) (* mu_0, ..., mu_{n-1} *) (* @mzero T R == the zero measure *) (* measure_add m1 m2 == the measure corresponding to the sum of the *) (* measures m1 and m2 *) (* mscale r m == the measure of corresponding to fun A => r * m A *) (* where r has type {nonneg R} *) (* mseries mu n == the measure corresponding to the sum of the *) (* measures mu_n, mu_{n+1}, ... *) (* mrestr mu mD == restriction of the measure mu to a set D; mD is a *) (* proof that D is measurable *) (* counting T R == counting measure *) (* *) (* sigma_finite A f == the measure f is sigma-finite on A : set T with *) (* T : ringOfSetsType. *) (* mu.-negligible A == A is mu negligible *) (* {ae mu, forall x, P x} == P holds almost everywhere for the measure mu *) (* *) (* {outer_measure set T -> \bar R} == type of an outer measure over sets *) (* of elements of type T where R is expected to be a *) (* numFieldType *) (* isOuterMeasure == corresponding mixin *) (* OuterMeasure == corresponding structure *) (* mu.-measurable A == A is Caratheodory measurable for the outer measure *) (* mu, i.e., *) (* forall B, mu A = mu (A `&` B) + mu (A `&` ~` B) *) (* measure_is_complete mu == the measure mu is complete *) (* *) (* * Caratheodory theorem (from an outer measure to a measure): *) (* caratheodory_type mu := T, where mu : {outer_measure set T -> \bar R} *) (* it is a canonical mesurableType copy of T *) (* the restriction of the outer measure mu to the *) (* sigma algebra of Caratheodory measurable sets is a *) (* measure *) (* Remark: sets that are negligible for *) (* this measure are Caratheodory measurable *) (* *) (* * Caratheodory theorem (from a premeasure to an outer measure): *) (* measurable_cover X == the set of sequences F such that *) (* - forall k, F k is measurable *) (* - X `<=` \bigcup_k (F k) *) (* mu^* == extension of the measure mu over a semiring of *) (* sets; it is an outer measure, declared as; we have *) (* the notation [the outer_measure of mu^*]) *) (* *) (* * Hahn Extension: *) (* Hahn_ext mu == extension of the additive measure mu over a *) (* semiring of sets to a measure over the generated *) (* sigma algebra (requires a proof of *) (* sigma-sub-additivity) *) (* *) (* * Product of measurable spaces: *) (* preimage_classes f1 f2 == sigma-algebra generated by the union of the *) (* preimages by f1 and the preimages by f2 with *) (* f1 : T -> T1 and f : T -> T2, T1 and T2 being *) (* measurableType's *) (* (d1, d2).-prod.-measurable A == A is measurable for the sigma-algebra *) (* generated from T1 x T2, with T1 and T2 *) (* measurableType's with resp. display d1 and d2 *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import Order.TTheory GRing.Theory Num.Def Num.Theory. Reserved Notation "'s<|' D , G '|>'" (at level 40, G, D at next level). Reserved Notation "'s<<' A '>>'". Reserved Notation "'d<<' D '>>'". Reserved Notation "mu .-negligible" (at level 2, format "mu .-negligible"). Reserved Notation "{ 'ae' m , P }" (at level 0, format "{ 'ae' m , P }"). Reserved Notation "mu .-measurable" (at level 2, format "mu .-measurable"). Reserved Notation "'\d_' a" (at level 8, a at level 2, format "'\d_' a"). Reserved Notation "G .-sigma" (at level 1, format "G .-sigma"). Reserved Notation "G .-sigma.-measurable" (at level 2, format "G .-sigma.-measurable"). Reserved Notation "d .-ring" (at level 1, format "d .-ring"). Reserved Notation "d .-ring.-measurable" (at level 2, format "d .-ring.-measurable"). Reserved Notation "mu .-cara" (at level 1, format "mu .-cara"). Reserved Notation "mu .-cara.-measurable" (at level 2, format "mu .-cara.-measurable"). Reserved Notation "mu .-caratheodory" (at level 2, format "mu .-caratheodory"). Reserved Notation "'<>'" (at level 2, format "'<>'"). Reserved Notation "'<>'" (at level 2, format "'<>'"). Reserved Notation "'<>'" (at level 2, format "'<>'"). Reserved Notation "'<>'" (at level 2, format "'<>'"). Reserved Notation "'<>'" (at level 2, format "'<>'"). Reserved Notation "'<>'" (at level 2, format "'<>'"). Reserved Notation "{ 'additive_measure' fUV }" (at level 0, format "{ 'additive_measure' fUV }"). Reserved Notation "[ 'additive_measure' 'of' f 'as' g ]" (at level 0, format "[ 'additive_measure' 'of' f 'as' g ]"). Reserved Notation "[ 'additive_measure' 'of' f ]" (at level 0, format "[ 'additive_measure' 'of' f ]"). Reserved Notation "{ 'measure' fUV }" (at level 0, format "{ 'measure' fUV }"). Reserved Notation "[ 'measure' 'of' f 'as' g ]" (at level 0, format "[ 'measure' 'of' f 'as' g ]"). Reserved Notation "[ 'measure' 'of' f ]" (at level 0, format "[ 'measure' 'of' f ]"). Reserved Notation "{ 'outer_measure' fUV }" (at level 0, format "{ 'outer_measure' fUV }"). Reserved Notation "[ 'outer_measure' 'of' f 'as' g ]" (at level 0, format "[ 'outer_measure' 'of' f 'as' g ]"). Reserved Notation "[ 'outer_measure' 'of' f ]" (at level 0, format "[ 'outer_measure' 'of' f ]"). Reserved Notation "p .-prod" (at level 1, format "p .-prod"). Reserved Notation "p .-prod.-measurable" (at level 2, format "p .-prod.-measurable"). Inductive measure_display := default_measure_display. Declare Scope measure_display_scope. Delimit Scope measure_display_scope with mdisp. Bind Scope measure_display_scope with measure_display. Local Open Scope classical_set_scope. Local Open Scope ring_scope. Section classes. Context {T} (C : set (set T) -> Prop) (D : set T) (G : set (set T)). Definition setC_closed := forall A, G A -> G (~` A). Definition setI_closed := forall A B, G A -> G B -> G (A `&` B). Definition setU_closed := forall A B, G A -> G B -> G (A `|` B). Definition setD_closed := forall A B, B `<=` A -> G A -> G B -> G (A `\` B). Definition setDI_closed := forall A B, G A -> G B -> G (A `\` B). Definition fin_bigcap_closed := forall I (D : set I) A_, finite_set D -> (forall i, D i -> G (A_ i)) -> G (\bigcap_(i in D) (A_ i)). Definition finN0_bigcap_closed := forall I (D : set I) A_, finite_set D -> D !=set0 -> (forall i, D i -> G (A_ i)) -> G (\bigcap_(i in D) (A_ i)). Definition fin_bigcup_closed := forall I (D : set I) A_, finite_set D -> (forall i, D i -> G (A_ i)) -> G (\bigcup_(i in D) (A_ i)). Definition semi_setD_closed := forall A B, G A -> G B -> exists D, [/\ finite_set D, D `<=` G, A `\` B = \bigcup_(X in D) X & trivIset D id]. Definition ndseq_closed := forall F, nondecreasing_seq F -> (forall i, G (F i)) -> G (\bigcup_i (F i)). Definition trivIset_closed := forall F : (set T)^nat, trivIset setT F -> (forall n, G (F n)) -> G (\bigcup_k F k). Definition fin_trivIset_closed := forall I (D : set I) (F : I -> set T), finite_set D -> trivIset D F -> (forall i, D i -> G (F i)) -> G (\bigcup_(k in D) F k). Definition setring := [/\ G set0, setU_closed & setDI_closed]. Definition sigma_algebra := [/\ G set0, (forall A, G A -> G (D `\` A)) & (forall A : (set T)^nat, (forall n, G (A n)) -> G (\bigcup_k A k))]. Definition dynkin := [/\ G setT, setC_closed & trivIset_closed]. Definition monotone_class := [/\ forall A, G A -> A `<=` D, G D, setD_closed & ndseq_closed]. End classes. Notation "'<>'" := (smallest (monotone_class D) G) : classical_set_scope. Notation "'<>'" := (<>) : classical_set_scope. Notation "'<>'" := (smallest dynkin G) : classical_set_scope. Notation "'<>'" := (smallest (sigma_algebra D) G) : classical_set_scope. Notation "'<>'" := (<>) : classical_set_scope. Notation "'<>'" := (smallest setring G) : classical_set_scope. Lemma fin_bigcup_closedP T (G : set (set T)) : (G set0 /\ setU_closed G) <-> fin_bigcup_closed G. Proof. split=> [[G0 GU] I D A DF GA|GU]; last first. have G0 : G set0 by have := GU void set0 point; rewrite bigcup0//; apply. by split=> // A B GA GB; rewrite -bigcup2inE; apply: GU => // -[|[|[]]]. elim/Pchoice: I => I in D DF A GA *; rewrite bigcup_fset_set// big_seq. by elim/big_ind: _ => // i; rewrite in_fset_set// inE => /GA. Qed. Lemma finN0_bigcap_closedP T (G : set (set T)) : setI_closed G <-> finN0_bigcap_closed G. Proof. split=> [GI I D A DF [i Di] GA|GI A B GA GB]; last first. by rewrite -bigcap2inE; apply: GI => // [|[|[|[]]]]; first by exists 0%N. elim/Pchoice: I => I in D DF i Di A GA *. have finDDi : finite_set (D `\ i) by exact: finite_setD. rewrite (bigcap_setD1 i)// bigcap_fset_set// big_seq. elim/big_rec: _ => // [|j B]; first by rewrite setIT; apply: GA. rewrite in_fset_set// inE => -[Dj /eqP nij] GAB. by rewrite setICA; apply: GI => //; apply: GA. Qed. Lemma sedDI_closedP T (G : set (set T)) : setDI_closed G <-> (setI_closed G /\ setD_closed G). Proof. split=> [GDI|[GI GD]]. by split=> A B => [|AB] => GA GB; rewrite -?setDD//; do ?apply: (GDI). move=> A B GA GB; suff <- : A `\` (A `&` B) = A `\` B. by apply: GD => //; apply: GI. by rewrite setDE setCI setIUr -setDE setDv set0U. Qed. Lemma sigma_algebra_bigcap T (I : choiceType) (D : set T) (F : I -> set (set T)) (J : set I) : (forall n, J n -> sigma_algebra D (F n)) -> sigma_algebra D (\bigcap_(i in J) F i). Proof. move=> mG; split=> [i Ji|A AJ i Ji|H GH i Ji]; first by have [] := mG i. - by have [_ mGiC _] := mG i Ji; exact/mGiC/AJ. - by have [_ _ mGiU] := mG i Ji; apply mGiU => j; exact: GH. Qed. Lemma sigma_algebraP T U (C : set (set T)) : (forall X, C X -> X `<=` U) -> sigma_algebra U C <-> [/\ C U, setD_closed C, ndseq_closed C & setI_closed C]. Proof. move=> C_subU; split => [[C0 CD CU]|[DT DC DU DI]]; split. - by rewrite -(setD0 U); apply: CD. - move=> A B BA CA CB; rewrite (_ : A `\` B = U `\` ((U `\` A) `|` B)). by apply CD; rewrite -bigcup2E; apply: CU => -[|[|[|]]] //=; exact: CD. rewrite setDUr setDD [in RHS]setDE setIACA setIid -setDE setIidr//. by rewrite setDE; apply: subIset; left; apply: C_subU. - by move=> F ndF DF; exact: CU. - move=> A B DA DB; rewrite (_ : A `&` B = U `\` ((U `\` A) `|` (U `\` B))). by apply CD; rewrite -bigcup2E; apply: CU => -[|[|[|]]] //; exact: CD. rewrite setDUr !setDD setIACA setIid (@setIidr _ U)//. by apply: subIset; left; exact: C_subU. - by rewrite -(setDv U); exact: DC. - by move=> A CA; apply: DC => //; exact: C_subU. - move=> F DF. rewrite [X in C X](_ : _ = \bigcup_i \big[setU/set0]_(j < i.+1) F j). apply: DU; first by move=> *; exact/subsetPset/subset_bigsetU. elim=> [|n ih]; first by rewrite big_ord_recr /= big_ord0 set0U; exact: DF. have CU : setU_closed C. move=> A B DA DB; rewrite (_ : A `|` B = U `\` ((U `\` A) `&` (U `\` B))). apply DC => //; last by apply: DI; apply: DC => //; exact: C_subU. by apply: subIset; left; apply: subIset; left. by rewrite setDIr// !setDD (setIidr (C_subU _ DA)) (setIidr (C_subU _ _)). by rewrite big_ord_recr; exact: CU. rewrite predeqE => x; split => [[n _ Fnx]|[n _]]. by exists n => //; rewrite big_ord_recr /=; right. by rewrite -bigcup_mkord => -[m /=]; rewrite ltnS => _ Fmx; exists m. Qed. Section generated_sigma_algebra. Context {T : Type} (D : set T) (G : set (set T)). Implicit Types (M : set (set T)). Lemma smallest_sigma_algebra : sigma_algebra D <>. Proof. split=> [|A GA|A GA] P [[P0 PD PU]] GP //. by apply: (PD); apply: GA. by apply: (PU) => n; apply: GA. Qed. Hint Resolve smallest_sigma_algebra : core. Lemma sub_sigma_algebra2 M : M `<=` G -> <> `<=` <>. Proof. exact: sub_smallest2r. Qed. Lemma sigma_algebra_id : sigma_algebra D G -> <> = G. Proof. by move=> /smallest_id->. Qed. Lemma sub_sigma_algebra : G `<=` <>. Proof. exact: sub_smallest. Qed. Lemma sigma_algebra0 : <> set0. Proof. by case: smallest_sigma_algebra. Qed. Lemma sigma_algebraCD : forall A, <> A -> <> (D `\` A). Proof. by case: smallest_sigma_algebra. Qed. Lemma sigma_algebra_bigcup (A : (set T)^nat) : (forall i, <> (A i)) -> <> (\bigcup_i (A i)). Proof. by case: smallest_sigma_algebra A. Qed. End generated_sigma_algebra. #[global] Hint Resolve smallest_sigma_algebra : core. Section generated_setring. Context {T : Type} (G : set (set T)). Implicit Types (M : set (set T)). Lemma smallest_setring : setring <>. Proof. split=> [|A B GA GB|A B GA GB] P [[P0 PU PDI]] GP //. by apply: (PU); [apply: GA|apply: GB]. by apply: (PDI); [apply: GA|apply: GB]. Qed. Hint Resolve smallest_setring : core. Lemma sub_setring2 M : M `<=` G -> <> `<=` <>. Proof. exact: sub_smallest2r. Qed. Lemma setring_id : setring G -> <> = G. Proof. by move=> /smallest_id->. Qed. Lemma sub_setring : G `<=` <>. Proof. exact: sub_smallest. Qed. Lemma setring0 : <> set0. Proof. by case: smallest_setring. Qed. Lemma setringDI : setDI_closed <>. Proof. by case: smallest_setring. Qed. Lemma setringU : setU_closed <>. Proof. by case: smallest_setring. Qed. Lemma setring_fin_bigcup : fin_bigcup_closed <>. Proof. by apply/fin_bigcup_closedP; split; [apply: setring0|apply: setringU]. Qed. End generated_setring. #[global] Hint Resolve smallest_setring setring0 : core. Lemma monotone_class_g_salgebra T (G : set (set T)) (D : set T) : (forall X, <> X -> X `<=` D) -> G D -> monotone_class D (<>). Proof. move=> sDGD GD; have := smallest_sigma_algebra D G. by move=> /(sigma_algebraP sDGD) [sT sD snd sI]; split. Qed. Section smallest_monotone_classE. Variables (T : Type) (G : set (set T)) (setIG : setI_closed G). Variables (D : set T) (GD : G D). Variables (H : set (set T)) (monoH : monotone_class D H) (GH : G `<=` H). Lemma smallest_monotone_classE : (forall X, <> X -> X `<=` D) -> (forall E, monotone_class D E -> G `<=` E -> H `<=` E) -> H = <>. Proof. move=> sDGD smallestH; rewrite eqEsubset; split. apply: (smallestH _ _ (@sub_sigma_algebra _ D G)). exact: monotone_class_g_salgebra. suff: setI_closed H. move=> IH; apply: smallest_sub => //. by apply/sigma_algebraP; by case: monoH. pose H_ A := [set X | H X /\ H (X `&` A)]. have setDH_ A : setD_closed (H_ A). move=> X Y XY [HX HXA] [HY HYA]; case: monoH => h _ setDH _; split. exact: setDH. rewrite (_ : _ `&` _ = (X `&` A) `\` (Y `&` A)); last first. rewrite predeqE => x; split=> [[[? ?] ?]|]; first by split => // -[]. by move=> [[? ?] YAx]; split => //; split => //; apply: contra_not YAx. by apply setDH => //; exact: setSI. have ndH_ A : ndseq_closed (H_ A). move=> F ndF H_AF; split. by case: monoH => h _ _; apply => // => n; have [] := H_AF n. rewrite setI_bigcupl; case: monoH => h _ _; apply => //. by move=> m n mn; apply/subsetPset; apply: setSI; apply/subsetPset/ndF. by move=> n; have [] := H_AF n. have GGH_ X : G X -> G `<=` H_ X. by move=> *; split; [exact: GH | apply: GH; exact: setIG]. have GHH_ X : G X -> H `<=` H_ X. move=> CX; apply: smallestH; [split => //; last exact: GGH_|exact: GGH_]. by move=> ? [? ?]; case: monoH => + _ _ _; exact. have HGH_ X : H X -> G `<=` H_ X. by move=> *; split; [exact: GH|rewrite setIC; apply GHH_]. have HHH_ X : H X -> H `<=` H_ X. move=> HX; apply: (smallestH _ _ (HGH_ _ HX)); split=> //. - by move=> ? [? ?]; case: monoH => + _ _ _; exact. - exact: HGH_. by move=> *; apply HHH_. Qed. End smallest_monotone_classE. Section monotone_class_subset. Variables (T : Type) (G : set (set T)) (setIG : setI_closed G). Variables (D : set T) (GD : G D). Variables (H : set (set T)) (monoH : monotone_class D H) (GH : G `<=` H). Lemma monotone_class_subset : (forall X, (<>) X -> X `<=` D) -> <> `<=` H. Proof. move=> sDGD; set M := <>. rewrite -(@smallest_monotone_classE _ _ setIG _ _ M) //. - exact: smallest_sub. - split => [A MA | E [monoE] | A B BA MA MB E [[EsubD ED setDE ndE] GE] |]. + by case: monoH => + _ _ _; apply; exact: MA. + exact. + by apply setDE => //; [exact: MA|exact: MB]. + by move=> F ndF MF E [[EsubD ED setDE ndE] CE]; apply ndE=> // n; exact: MF. - exact: sub_smallest. - by move=> ? ? ?; exact: smallest_sub. Qed. End monotone_class_subset. Section dynkin. Variable T : Type. Implicit Types G D : set (set T). Lemma dynkinT G : dynkin G -> G setT. Proof. by case. Qed. Lemma dynkinC G : dynkin G -> setC_closed G. Proof. by case. Qed. Lemma dynkinU G : dynkin G -> (forall F : (set T)^nat, trivIset setT F -> (forall n, G (F n)) -> G (\bigcup_k F k)). Proof. by case. Qed. End dynkin. Section dynkin_lemmas. Variable T : Type. Implicit Types D G : set (set T). Lemma dynkin_monotone G : dynkin G <-> monotone_class setT G. Proof. split => [[GT setCG trG]|[_ GT setDG ndG]]; split => //. - move=> A B BA GA GB; rewrite setDE -(setCK (_ `&` _)) setCI; apply setCG. rewrite setCK -bigcup2E; apply: trG. + by rewrite -trivIset_bigcup2 setIC; apply subsets_disjoint. + by move=> [|[//|n]]; [exact: setCG|rewrite /bigcup2 -setCT; apply: setCG]. - move=> F ndF GF; rewrite eq_bigcup_seqD; apply trG. exact: trivIset_seqD. move=> [/=|n]; first exact: GF. rewrite /seqD setDE -(setCK (_ `&` _)) setCI; apply setCG. rewrite setCK -bigcup2E; apply trG. + rewrite -trivIset_bigcup2 setIC; apply subsets_disjoint. exact/subsetPset/ndF/ltnW. + move=> [|[|]]; rewrite /bigcup2 /=; [exact/setCG/GF|exact/GF|]. by move=> _; rewrite -setCT; apply: setCG. - by move=> A B; rewrite -setTD; apply: setDG. - move=> F tF GF; pose A i := \big[setU/set0]_(k < i.+1) F k. rewrite (_ : bigcup _ _ = \bigcup_i A i); last first. rewrite predeqE => t; split => [[n _ Fn]|[n _]]. by exists n => //; rewrite /A -bigcup_mkord; exists n=> //=; rewrite ltnS. by rewrite /A -bigcup_mkord => -[m /=]; rewrite ltnS => mn Fmt; exists m. apply ndG; first by move=> a b ab; exact/subsetPset/subset_bigsetU. elim=> /= => [|n ih]. by rewrite /A big_ord_recr /= big_ord0 set0U; exact: GF. rewrite /A /= big_ord_recr /= -/(A n). rewrite (_ : _ `|` _ = ~` (~` A n `\` F n.+1)); last first. by rewrite setDE setCI !setCK. rewrite -setTD; apply setDG => //; apply setDG => //; last first. by rewrite -setTD; apply: setDG. apply/disjoints_subset; rewrite setIC. by apply: (@trivIset_bigsetUI _ predT) => //; rewrite /predT /= trueE. Qed. Lemma dynkin_g_dynkin G : dynkin (<>). Proof. split=> [D /= [] []//| | ]. - by move=> Y sGY D /= [dD GD]; exact/(dynkinC dD)/(sGY D). - by move=> F tF gGF D /= [dD GD]; apply dD => // k; exact: gGF. Qed. Lemma sigma_algebra_dynkin G : sigma_algebra setT G -> dynkin G. Proof. case=> ? DC DU; split => [| |? ? ?]; last exact: DU. - by rewrite -setC0 -setTD; exact: DC. - by move=> A GA; rewrite -setTD; apply: DC. Qed. Lemma dynkin_setI_bigsetI G (F : (set T)^nat) : dynkin G -> setI_closed G -> (forall n, G (F n)) -> forall n, G (\big[setI/setT]_(i < n) F i). Proof. move=> dG GI GF; elim => [|n ih]; last by rewrite big_ord_recr /=; apply: GI. by rewrite big_ord0; exact: (dynkinT dG). Qed. Lemma dynkin_setI_sigma_algebra G : dynkin G -> setI_closed G -> sigma_algebra setT G. Proof. move=> dG GI; split => [|//|F DF]. - by rewrite -setCT; exact/(dynkinC dG)/(dynkinT dG). - by move=> A GA; rewrite setTD; exact: (dynkinC dG). - rewrite seqDU_bigcup_eq; apply/(dynkinU dG) => //. move=> n; rewrite /seqDU setDE; apply GI => //. rewrite -bigcup_mkord setC_bigcup bigcap_mkord. by apply: (@dynkin_setI_bigsetI _ (fun x => ~` F x)) => // ?; exact/(dynkinC dG). Qed. Lemma setI_closed_gdynkin_salgebra G : setI_closed G -> <> = <>. Proof. move=> GI; rewrite eqEsubset; split. by apply: sub_smallest2l; apply: sigma_algebra_dynkin. pose delta (D : set T) := [set E | <> (E `&` D)]. have ddelta (D : set T) : <> D -> dynkin (delta D). move=> dGD; split; first by rewrite /delta /= setTI. - move=> E DE; rewrite /delta /=. have -> : (~` E) `&` D = ~` ((E `&` D) `|` (~` D)). by rewrite -[LHS]setU0 -(setICl D) -setIUl -setCI -{2}(setCK D) -setCU. have : <> ((E `&` D) `|` ~` D). rewrite -bigcup2E => S [dS GS]; apply (dynkinU dS). move=> [|[|i]] [|[|j]] => // _ _; rewrite /bigcup2 /=. + by rewrite -setIA setICr setI0 => /set0P; rewrite eqxx. + by rewrite setI0 => /set0P; rewrite eqxx. + by rewrite setICA setICl setI0 => /set0P; rewrite eqxx. + by rewrite setI0 => /set0P; rewrite eqxx. + by rewrite set0I => /set0P; rewrite eqxx. + by rewrite set0I => /set0P; rewrite eqxx. + by rewrite set0I => /set0P; rewrite eqxx. move=> [|[|n]] //; rewrite /bigcup2 /=; [exact: DE| |]. + suff: <> (~` D) by exact. by move=> F [dF GF]; apply (dynkinC dF) => //; exact: dGD. + by rewrite -setCT; apply/(dynkinC dS)/(dynkinT dS). by move=> dGEDD S /= [+ GS] => dS; apply/(dynkinC dS); exact: dGEDD. - move=> F tF deltaDF; rewrite /delta /= => S /= [dS GS]. rewrite setI_bigcupl; apply (dynkinU dS) => //. by under eq_fun do rewrite setIC; exact: trivIset_setI. by move=> n; exact: deltaDF. have GdG : G `<=` <> by move=> ? ? ? [_]; apply. have Gdelta A : G A -> G `<=` delta A. by move=> ? ? ?; rewrite /delta /= => ? [?]; apply; exact/GI. have GdGdelta A : G A -> <> `<=` delta A. move=> ?; apply: smallest_sub => //; last exact: Gdelta. by apply/ddelta; exact: GdG. have dGGI A B : <> A -> G B -> <> (A `&` B). by move=> ? ?; apply: GdGdelta. have dGGdelta A : <> A -> G `<=` delta A. by move=> ? ? ?; rewrite /delta /= setIC; exact: dGGI. have dGdGdelta A : <> A -> <> `<=` delta A. by move=> ?; exact: smallest_sub (ddelta _ _) (dGGdelta _ _). have dGdGdG A B : <> A -> <> B -> <> (A `&` B). by move=> ? ?; exact: dGdGdelta. apply: smallest_sub => //; apply: dynkin_setI_sigma_algebra => //. exact: dynkin_g_dynkin. Qed. End dynkin_lemmas. HB.mixin Record isSemiRingOfSets (d : measure_display) T := { ptclass : Pointed.class_of T; measurable : set (set T) ; measurable0 : measurable set0 ; measurableI : setI_closed measurable; semi_measurableD : semi_setD_closed measurable; }. #[short(type=semiRingOfSetsType)] HB.structure Definition SemiRingOfSets d := {T of isSemiRingOfSets d T}. Canonical semiRingOfSets_eqType d (T : semiRingOfSetsType d) := EqType T ptclass. Canonical semiRingOfSets_choiceType d (T : semiRingOfSetsType d) := ChoiceType T ptclass. Canonical semiRingOfSets_ptType d (T : semiRingOfSetsType d) := PointedType T ptclass. Notation "d .-measurable" := (@measurable d%mdisp) : classical_set_scope. Notation "'measurable" := (@measurable default_measure_display) : classical_set_scope. HB.mixin Record RingOfSets_from_semiRingOfSets d T of isSemiRingOfSets d T := { measurableU : setU_closed (@measurable d [the semiRingOfSetsType d of T]) }. #[short(type=ringOfSetsType)] HB.structure Definition RingOfSets d := {T of RingOfSets_from_semiRingOfSets d T & SemiRingOfSets d T}. Canonical ringOfSets_eqType d (T : ringOfSetsType d) := EqType T ptclass. Canonical ringOfSets_choiceType d (T : ringOfSetsType d) := ChoiceType T ptclass. Canonical ringOfSets_ptType d (T : ringOfSetsType d) := PointedType T ptclass. HB.mixin Record AlgebraOfSets_from_RingOfSets d T of RingOfSets d T := { measurableT : measurable [set: T] }. #[short(type=algebraOfSetsType)] HB.structure Definition AlgebraOfSets d := {T of AlgebraOfSets_from_RingOfSets d T & RingOfSets d T}. Canonical algebraOfSets_eqType d (T : algebraOfSetsType d) := EqType T ptclass. Canonical algebraOfSets_choiceType d (T : algebraOfSetsType d) := ChoiceType T ptclass. Canonical algebraOfSets_ptType d (T : algebraOfSetsType d) := PointedType T ptclass. HB.mixin Record Measurable_from_algebraOfSets d T of AlgebraOfSets d T := { bigcupT_measurable : forall F : (set T)^nat, (forall i, measurable (F i)) -> measurable (\bigcup_i (F i)) }. #[short(type=measurableType)] HB.structure Definition Measurable d := {T of Measurable_from_algebraOfSets d T & AlgebraOfSets d T}. Canonical measurable_eqType d (T : measurableType d) := EqType T ptclass. Canonical measurable_choiceType d (T : measurableType d) := ChoiceType T ptclass. Canonical measurable_ptType d (T : measurableType d) := PointedType T ptclass. HB.factory Record isRingOfSets (d : measure_display) T := { ptclass : Pointed.class_of T; measurable : set (set T) ; measurable0 : measurable set0 ; measurableU : setU_closed measurable; measurableD : setDI_closed measurable; }. HB.builders Context d T of isRingOfSets d T. Implicit Types (A B C D : set T). Lemma mI : setI_closed measurable. Proof. by move=> A B mA mB; rewrite -setDD; do ?apply: measurableD. Qed. Lemma mD : semi_setD_closed measurable. Proof. move=> A B Am Bm; exists [set A `\` B]; split; rewrite ?bigcup_set1//. by move=> C ->; apply: measurableD. by move=> X Y -> ->. Qed. HB.instance Definition T_isSemiRingOfSets := @isSemiRingOfSets.Build d T ptclass measurable measurable0 mI mD. HB.instance Definition T_isRingOfSets := RingOfSets_from_semiRingOfSets.Build d T measurableU. HB.end. HB.factory Record isAlgebraOfSets (d : measure_display) T := { ptclass : Pointed.class_of T; measurable : set (set T) ; measurable0 : measurable set0 ; measurableU : setU_closed measurable; measurableC : setC_closed measurable }. HB.builders Context d T of isAlgebraOfSets d T. Lemma mD : setDI_closed measurable. Proof. move=> A B mA mB; rewrite setDE -[A]setCK -setCU. by do ?[apply: measurableU | apply: measurableC]. Qed. HB.instance Definition T_isRingOfSets := @isRingOfSets.Build d T ptclass measurable measurable0 measurableU mD. Lemma measurableT : measurable (@setT T). Proof. by rewrite -setC0; apply: measurableC; exact: measurable0. Qed. HB.instance Definition T_isAlgebraOfSets : AlgebraOfSets_from_RingOfSets d T := AlgebraOfSets_from_RingOfSets.Build d T measurableT. HB.end. HB.factory Record isMeasurable (d : measure_display) T := { ptclass : Pointed.class_of T; measurable : set (set T) ; measurable0 : measurable set0 ; measurableC : forall A, measurable A -> measurable (~` A) ; measurable_bigcup : forall F : (set T)^nat, (forall i, measurable (F i)) -> measurable (\bigcup_i (F i)) }. HB.builders Context d T of isMeasurable d T. Obligation Tactic := idtac. Lemma mU : setU_closed measurable. Proof. move=> A B mA mB; rewrite -bigcup2E. by apply measurable_bigcup => -[//|[//|i]]; exact: measurable0. Qed. Lemma mC : setC_closed measurable. Proof. by move=> *; apply: measurableC. Qed. HB.instance Definition T_isAlgebraOfSets := @isAlgebraOfSets.Build d T ptclass measurable measurable0 mU mC. HB.instance Definition T_isMeasurable := @Measurable_from_algebraOfSets.Build d T measurable_bigcup. HB.end. #[global] Hint Extern 0 (measurable set0) => solve [apply: measurable0] : core. #[global] Hint Extern 0 (measurable setT) => solve [apply: measurableT] : core. Section ringofsets_lemmas. Variables (d : measure_display) (T : ringOfSetsType d). Implicit Types A B : set T. Lemma bigsetU_measurable I r (P : pred I) (F : I -> set T) : (forall i, P i -> measurable (F i)) -> measurable (\big[setU/set0]_(i <- r | P i) F i). Proof. by move=> mF; elim/big_ind : _ => //; exact: measurableU. Qed. Lemma fin_bigcup_measurable I (D : set I) (F : I -> set T) : finite_set D -> (forall i, D i -> measurable (F i)) -> measurable (\bigcup_(i in D) F i). Proof. elim/Pchoice: I => I in D F * => Dfin Fm. rewrite bigcup_fset_set// big_seq; apply: bigsetU_measurable => i. by rewrite in_fset_set ?inE// => *; apply: Fm. Qed. Lemma measurableD : setDI_closed (@measurable d T). Proof. move=> A B mA mB; case: (semi_measurableD A B) => // [D [Dfin Dl -> _]]. by apply: fin_bigcup_measurable. Qed. End ringofsets_lemmas. Section algebraofsets_lemmas. Variables (d : measure_display) (T : algebraOfSetsType d). Implicit Types A B : set T. Lemma measurableC A : measurable A -> measurable (~` A). Proof. by move=> mA; rewrite -setTD; exact: measurableD. Qed. Lemma bigsetI_measurable I r (P : pred I) (F : I -> set T) : (forall i, P i -> measurable (F i)) -> measurable (\big[setI/setT]_(i <- r | P i) F i). Proof. move=> mF; rewrite -[X in measurable X]setCK setC_bigsetI; apply: measurableC. by apply: bigsetU_measurable => i Pi; apply/measurableC/mF. Qed. Lemma fin_bigcap_measurable I (D : set I) (F : I -> set T) : finite_set D -> (forall i, D i -> measurable (F i)) -> measurable (\bigcap_(i in D) F i). Proof. elim/Pchoice: I => I in D F * => Dfin Fm. rewrite bigcap_fset_set// big_seq; apply: bigsetI_measurable => i. by rewrite in_fset_set ?inE// => *; apply: Fm. Qed. End algebraofsets_lemmas. Section measurable_lemmas. Variables (d : measure_display) (T : measurableType d). Implicit Types (A B : set T) (F : (set T)^nat) (P : set nat). Lemma sigma_algebra_measurable : sigma_algebra setT (@measurable d T). Proof. by split=> // [A|]; [exact: measurableD|exact: bigcupT_measurable]. Qed. Lemma bigcup_measurable F P : (forall k, P k -> measurable (F k)) -> measurable (\bigcup_(i in P) F i). Proof. move=> PF; rewrite bigcup_mkcond; apply: bigcupT_measurable => k. by case: ifP => //; rewrite inE; exact: PF. Qed. Lemma bigcap_measurable F P : (forall k, P k -> measurable (F k)) -> measurable (\bigcap_(i in P) F i). Proof. move=> PF; rewrite -[X in measurable X]setCK setC_bigcap; apply: measurableC. by apply: bigcup_measurable => k Pk; exact/measurableC/PF. Qed. Lemma bigcapT_measurable F : (forall i, measurable (F i)) -> measurable (\bigcap_i (F i)). Proof. by move=> ?; exact: bigcap_measurable. Qed. End measurable_lemmas. Lemma bigcupT_measurable_rat (d : measure_display) (T : measurableType d) (F : rat -> set T) : (forall i, measurable (F i)) -> measurable (\bigcup_i F i). Proof. move=> Fm; have /ppcard_eqP[f] := card_rat. by rewrite (reindex_bigcup f^-1%FUN setT)//=; exact: bigcupT_measurable. Qed. Section discrete_measurable. (*Variable T : pointedType.*) Definition discrete_measurable : set (set nat) := [set: set nat]. Let discrete_measurable0 : discrete_measurable set0. Proof. by []. Qed. Let discrete_measurableC X : discrete_measurable X -> discrete_measurable (~` X). Proof. by []. Qed. Let discrete_measurableU (F : (set nat)^nat) : (forall i, discrete_measurable (F i)) -> discrete_measurable (\bigcup_i F i). Proof. by []. Qed. HB.instance Definition _ := @isMeasurable.Build default_measure_display nat (Pointed.class _) discrete_measurable discrete_measurable0 discrete_measurableC discrete_measurableU. End discrete_measurable. Definition sigma_display {T} : set (set T) -> measure_display. Proof. exact. Qed. Definition salgebraType {T} (G : set (set T)) := T. Section g_salgebra_instance. Variables (T : pointedType) (G : set (set T)). Lemma sigma_algebraC (A : set T) : <> A -> <> (~` A). Proof. by move=> sGA; rewrite -setTD; exact: sigma_algebraCD. Qed. Canonical salgebraType_eqType := EqType (salgebraType G) (Equality.class T). Canonical salgebraType_choiceType := ChoiceType (salgebraType G) (Choice.class T). Canonical salgebraType_ptType := PointedType (salgebraType G) (Pointed.class T). HB.instance Definition _ := @isMeasurable.Build (sigma_display G) (salgebraType G) (Pointed.class T) <> (@sigma_algebra0 _ setT G) (@sigma_algebraC) (@sigma_algebra_bigcup _ setT G). End g_salgebra_instance. Notation "G .-sigma" := (sigma_display G) : measure_display_scope. Notation "G .-sigma.-measurable" := (measurable : set (set (salgebraType G))) : classical_set_scope. Lemma measurable_g_measurableTypeE (T : pointedType) (G : set (set T)) : sigma_algebra setT G -> G.-sigma.-measurable = G. Proof. exact: sigma_algebra_id. Qed. Definition measurable_fun d d' (T : measurableType d) (U : measurableType d') (D : set T) (f : T -> U) := measurable D -> forall Y, measurable Y -> measurable (D `&` f @^-1` Y). Section measurable_fun. Variables (d1 d2 d3 : measure_display). Variables (T1 : measurableType d1). Variables (T2 : measurableType d2). Variables (T3 : measurableType d3). Lemma measurable_fun_id (D : set T1) : measurable_fun D id. Proof. by move=> mD A mA; apply: measurableI. Qed. Lemma measurable_fun_comp (f : T2 -> T3) E (g : T1 -> T2) : measurable_fun setT f -> measurable_fun E g -> measurable_fun E (f \o g). Proof. move=> mf mg /= mE A mA; rewrite comp_preimage; apply/mg => //. by rewrite -[X in measurable X]setTI; apply/mf. Qed. Lemma eq_measurable_fun (D : set T1) (f g : T1 -> T2) : {in D, f =1 g} -> measurable_fun D f -> measurable_fun D g. Proof. move=> Dfg Df mD A mA; rewrite (_ : D `&` _ = D `&` f @^-1` A); first exact: Df. apply/seteqP; rewrite /preimage; split => [x /= [Dx Agx]|x /= [Dx Afx]]. by split=> //; rewrite Dfg// inE. by split=> //; rewrite -Dfg// inE. Qed. Lemma measurable_fun_cst (D : set T1) (r : T2) : measurable_fun D (cst r : T1 -> _). Proof. by move=> mD /= Y mY; rewrite preimage_cst; case: ifPn; rewrite ?setIT ?setI0. Qed. Lemma measurable_funU (D E : set T1) (f : T1 -> T2) : measurable D -> measurable E -> measurable_fun (D `|` E) f <-> measurable_fun D f /\ measurable_fun E f. Proof. move=> mD mE; split=> [mDEf|[mDf mEf] mDE A mA]; last first. by rewrite setIUl; apply: measurableU; [exact: mDf|exact: mEf]. split. - move=> {}mD A /mDEf => /(_ (measurableU _ _ mD mE))/(measurableI D)-/(_ mD). by rewrite setICA setIA setUK. - move=> {}mE A /mDEf => /(_ (measurableU _ _ mD mE))/(measurableI E)-/(_ mE). by rewrite setICA setIA setUC setUK. Qed. Lemma measurable_funS (E D : set T1) (f : T1 -> T2) : measurable E -> D `<=` E -> measurable_fun E f -> measurable_fun D f. Proof. move=> mE DE mf mD; have mC : measurable (E `\` D) by exact: measurableD. move: (mD). have := measurable_funU f mD mC. suff -> : D `|` (E `\` D) = E by move=> [[]] //. by rewrite setDUK. Qed. Lemma measurable_fun_ext (D : set T1) (f g : T1 -> T2) : {in D, f =1 g} -> measurable_fun D f -> measurable_fun D g. Proof. by move=> fg mf mD A mA; rewrite [X in measurable X](_ : _ = D `&` f @^-1` A); [exact: mf|exact/esym/eq_preimage]. Qed. Lemma measurable_restrict D E (f : T1 -> T2) : measurable D -> measurable E -> D `<=` E -> measurable_fun D f <-> measurable_fun E (f \_ D). Proof. move=> mD mE DE; split => mf _ /= X mX. - rewrite preimage_restrict; apply/measurableI => //. by apply/measurableU/mf => //; case: ifP => // _; apply: measurableC. - have := mf mE _ mX; rewrite preimage_restrict. case: ifP => ptX; last first. rewrite set0U => /(measurableI _ _ mD). by rewrite (setIA D) (setIidl DE) setIA setIid. rewrite setUIr setvU setTI => /(measurableI _ _ mD). by rewrite setIA (setIidl DE) setIUr setIv set0U. Qed. End measurable_fun. Arguments measurable_fun_ext {d1 d2 T1 T2 D} f {g}. Section measurability. Definition preimage_class (aT rT : Type) (D : set aT) (f : aT -> rT) (G : set (set rT)) : set (set aT) := [set D `&` f @^-1` B | B in G]. (* f is measurable on the sigma-algebra generated by itself *) Lemma preimage_class_measurable_fun d (aT : pointedType) (rT : measurableType d) (D : set aT) (f : aT -> rT) : measurable_fun (D : set (salgebraType (preimage_class D f measurable))) f. Proof. by move=> mD A mA; apply: sub_sigma_algebra; exists A. Qed. Lemma sigma_algebra_preimage_class (aT rT : Type) (G : set (set rT)) (D : set aT) (f : aT -> rT) : sigma_algebra setT G -> sigma_algebra D (preimage_class D f G). Proof. case=> h0 hC hU; split; first by exists set0 => //; rewrite preimage_set0 setI0. - move=> A; rewrite /preimage_class /= => -[B mB <-{A}]. exists (~` B); first by rewrite -setTD; exact: hC. rewrite predeqE => x; split=> [[Dx Bfx]|[Dx]]; first by split => // -[] _ /Bfx. by move=> /not_andP[]. - move=> F; rewrite /preimage_class /= => mF. have {}mF n : exists x, G x /\ D `&` f @^-1` x = F n. by have := mF n => -[B mB <-]; exists B. have [F' mF'] := @choice _ _ (fun x y => G y /\ D `&` f @^-1` y = F x) mF. exists (\bigcup_k (F' k)); first by apply: hU => n; exact: (mF' n).1. rewrite preimage_bigcup setI_bigcupr; apply eq_bigcupr => i _. exact: (mF' i).2. Qed. Definition image_class (aT rT : Type) (D : set aT) (f : aT -> rT) (G : set (set aT)) : set (set rT) := [set B : set rT | G (D `&` f @^-1` B)]. Lemma sigma_algebra_image_class (aT rT : Type) (D : set aT) (f : aT -> rT) (G : set (set aT)) : sigma_algebra D G -> sigma_algebra setT (image_class D f G). Proof. move=> [G0 GC GU]; split; rewrite /image_class. - by rewrite /= preimage_set0 setI0. - move=> A /= GfAD; rewrite setTD -preimage_setC -setDE. rewrite (_ : _ `\` _ = D `\` (D `&` f @^-1` A)); first exact: GC. rewrite predeqE => x; split=> [[Dx fAx]|[Dx fADx]]. by split => // -[] _ /fAx. by split => //; exact: contra_not fADx. - by move=> F /= mF; rewrite preimage_bigcup setI_bigcupr; exact: GU. Qed. Lemma sigma_algebra_preimage_classE aT (rT : pointedType) (D : set aT) (f : aT -> rT) (G' : set (set rT)) : <> = preimage_class D f (G'.-sigma.-measurable). Proof. rewrite eqEsubset; split. have mG : sigma_algebra D (preimage_class D f (G'.-sigma.-measurable)). exact/sigma_algebra_preimage_class/sigma_algebra_measurable. have subset_preimage : preimage_class D f G' `<=` preimage_class D f (G'.-sigma.-measurable). by move=> A [B CCB <-{A}]; exists B => //; apply sub_sigma_algebra. exact: smallest_sub. have G'pre A' : G' A' -> (preimage_class D f G') (D `&` f @^-1` A'). by move=> ?; exists A'. pose I : set (set aT) := <>. have G'sfun : G' `<=` image_class D f I. by move=> A' /G'pre[B G'B h]; apply: sub_sigma_algebra; exists B. have sG'sfun : <> `<=` image_class D f I. apply: smallest_sub => //; apply: sigma_algebra_image_class. exact: smallest_sigma_algebra. by move=> _ [B mB <-]; exact: sG'sfun. Qed. Lemma measurability d d' (aT : measurableType d) (rT : measurableType d') (D : set aT) (f : aT -> rT) (G' : set (set rT)) : @measurable _ rT = <> -> preimage_class D f G' `<=` @measurable _ aT -> measurable_fun D f. Proof. move=> sG_rT fG_aT mD. suff h : preimage_class D f (@measurable _ rT) `<=` @measurable _ aT. by move=> A mA; apply: h; exists A. have -> : preimage_class D f (@measurable _ rT) = <>. by rewrite [in LHS]sG_rT [in RHS]sigma_algebra_preimage_classE. apply: smallest_sub => //; split => //. - by move=> A mA; exact: measurableD. - by move=> F h; exact: bigcupT_measurable. Qed. End measurability. Local Open Scope ereal_scope. Section additivity. Variables (d : measure_display) (R : numFieldType) (T : semiRingOfSetsType d) (mu : set T -> \bar R). Definition semi_additive2 := forall A B, measurable A -> measurable B -> measurable (A `|` B) -> A `&` B = set0 -> mu (A `|` B) = mu A + mu B. Definition semi_additive := forall F n, (forall k : nat, measurable (F k)) -> trivIset setT F -> measurable (\big[setU/set0]_(k < n) F k) -> mu (\big[setU/set0]_(i < n) F i) = \sum_(i < n) mu (F i). Definition semi_sigma_additive := forall F, (forall i : nat, measurable (F i)) -> trivIset setT F -> measurable (\bigcup_n F n) -> (fun n => \sum_(0 <= i < n) mu (F i)) --> mu (\bigcup_n F n). Definition additive2 := forall A B, measurable A -> measurable B -> A `&` B = set0 -> mu (A `|` B) = mu A + mu B. Definition additive := forall F, (forall i : nat, measurable (F i)) -> trivIset setT F -> forall n, mu (\big[setU/set0]_(i < n) F i) = \sum_(i < n) mu (F i). Definition sigma_additive := forall F, (forall i : nat, measurable (F i)) -> trivIset setT F -> (fun n => \sum_(0 <= i < n) mu (F i)) --> mu (\bigcup_n F n). Definition sub_additive := forall (A : set T) (F : nat -> set T) n, (forall k, `I_n k -> measurable (F k)) -> measurable A -> A `<=` \big[setU/set0]_(k < n) F k -> mu A <= \sum_(k < n) mu (F k). Definition sigma_sub_additive := forall (A : set T) (F : nat -> set T), (forall n, measurable (F n)) -> measurable A -> A `<=` \bigcup_n F n -> mu A <= \sum_(n \bar R) := exists2 F : (set T)^nat, A = \bigcup_(i : nat) F i & forall i, measurable (F i) /\ mu (F i) < +oo. Lemma semi_additiveW : mu set0 = 0 -> semi_additive -> semi_additive2. Proof. move=> mu0 amx A B mA mB + AB; rewrite -bigcup2inE bigcup_mkord. move=> /(amx (bigcup2 A B))->. - by rewrite !(big_ord_recl, big_ord0)/= adde0. - by move=> [|[|[]]]//=. - by move=> [|[|i]] [|[|j]]/= _ _; rewrite ?(AB, setI0, set0I, setIC) => -[]. Qed. End additivity. Section ring_additivity. Variables (d : measure_display) (R : numFieldType) (T : ringOfSetsType d) (mu : set T -> \bar R). Lemma semi_additiveE : semi_additive mu = additive mu. Proof. rewrite propeqE; split=> [sa A mA tA n|+ A m mA tA UAm]; last by move->. by rewrite sa //; exact: bigsetU_measurable. Qed. Lemma semi_additive2E : semi_additive2 mu = additive2 mu. Proof. rewrite propeqE; split=> [amu A B ? ? ?|amu A B ? ? _ ?]; last by rewrite amu. by rewrite amu //; exact: measurableU. Qed. Lemma additive2P : mu set0 = 0 -> semi_additive mu <-> additive2 mu. Proof. move=> mu0; rewrite -semi_additive2E; split; first exact: semi_additiveW. rewrite semi_additiveE semi_additive2E => muU A Am Atriv n. elim: n => [|n IHn]; rewrite ?(big_ord_recr, big_ord0) ?mu0//=. rewrite muU ?IHn//=; first by apply: bigsetU_measurable. rewrite -bigcup_mkord -subset0 => x [[/= m + Amx] Anx]. by rewrite (Atriv m n) ?ltnn//=; exists x. Qed. End ring_additivity. Lemma semi_sigma_additive_is_additive d (R : realFieldType (*TODO: numFieldType if possible?*)) (X : semiRingOfSetsType d) (mu : set X -> \bar R) : mu set0 = 0 -> semi_sigma_additive mu -> semi_additive mu. Proof. move=> mu0 samu A n Am Atriv UAm. have := samu (fun i => if (i < n)%N then A i else set0). rewrite (bigcup_splitn n) bigcup0 ?setU0; last first. by move=> i _; rewrite -ltn_subRL subnn. under eq_bigr do rewrite ltn_ord. move=> /(_ _ _ UAm)/(@cvg_lim _) <-//; last 2 first. - by move=> i; case: ifP. - move=> i j _ _; do 2![case: ifP] => ? ?; do ?by rewrite (setI0, set0I) => -[]. by move=> /Atriv; apply. apply: lim_near_cst => //=; near=> i. have /subnKC<- : (n <= i)%N by near: i; exists n. transitivity (\sum_(j < n + (i - n)) mu (if (j < n)%N then A j else set0)). by rewrite big_mkord. rewrite big_split_ord/=; under eq_bigr do rewrite ltn_ord. by rewrite [X in _ + X]big1 ?adde0// => ?; rewrite -ltn_subRL subnn. Unshelve. all: by end_near. Qed. Lemma semi_sigma_additiveE (R : numFieldType) d (X : measurableType d) (mu : set X -> \bar R) : semi_sigma_additive mu = sigma_additive mu. Proof. rewrite propeqE; split=> [amu A mA tA|amu A mA tA mbigcupA]; last exact: amu. by apply: amu => //; exact: bigcupT_measurable. Qed. Lemma sigma_additive_is_additive (R : realFieldType) d (X : measurableType d) (mu : set X -> \bar R) : mu set0 = 0 -> sigma_additive mu -> additive mu. Proof. move=> mu0; rewrite -semi_sigma_additiveE -semi_additiveE. exact: semi_sigma_additive_is_additive. Qed. Lemma fset_set_image (T1 T2 : choiceType) (D : set T1) (f : T1 -> T2) : finite_set D -> fset_set (f @` D) = (f @` (fset_set D))%fset. Proof. move=> Dfin; apply/fsetP => z; rewrite in_fset_set; last exact: finite_image. apply/idP/idP => [|/imfsetP[r /=]]. rewrite inE /= => -[x Dx <-{z}]; apply/imfsetP => /=; exists x => //. by rewrite in_fset_set ?inE/=. by rewrite in_fset_set// inE => Dr ->; rewrite inE; exists r. Qed. HB.mixin Record isAdditiveMeasure d (R : numFieldType) (T : semiRingOfSetsType d) (mu : set T -> \bar R) := { measure_ge0 : forall x, 0 <= mu x ; measure_semi_additive : semi_additive mu }. HB.structure Definition AdditiveMeasure d (R : numFieldType) (T : semiRingOfSetsType d) := { mu & isAdditiveMeasure d R T mu }. Notation additive_measure := AdditiveMeasure.type. Notation "{ 'additive_measure' 'set' T '->' '\bar' R }" := (additive_measure R T) (at level 36, T, R at next level, format "{ 'additive_measure' 'set' T '->' '\bar' R }") : ring_scope. Arguments measure_ge0 {d R T} _. Section additive_measure_signed. Context d (R : numFieldType) (T : semiRingOfSetsType d). Variable mu : {additive_measure set T -> \bar R}. Lemma additive_measure_snum_subproof S : Signed.spec 0 ?=0 >=0 (mu S). Proof. exact: measure_ge0. Qed. Canonical additive_measure_snum S := Signed.mk (additive_measure_snum_subproof S). End additive_measure_signed. Section additive_measure_on_semiring_of_sets. Variables (d : measure_display) (R : numFieldType) (T : semiRingOfSetsType d) (mu : {additive_measure set T -> \bar R}). Lemma measure0 : mu set0 = 0. Proof. have /[!big_ord0] ->// := @measure_semi_additive _ _ _ mu (fun=> set0) 0%N. exact: trivIset_set0. Qed. Hint Resolve measure0 : core. Hint Resolve measure_ge0 : core. Hint Resolve measure_semi_additive : core. Lemma measure_semi_additive_ord (n : nat) (F : 'I_n -> set T) : (forall (k : 'I_n), measurable (F k)) -> trivIset setT F -> measurable (\big[setU/set0]_(k < n) F k) -> mu (\big[setU/set0]_(i < n) F i) = \sum_(i < n) mu (F i). Proof. move=> mF tF mUF; pose F' (i : nat) := oapp F set0 (insub i). have FE (i : 'I_n) : F i = (F' \o val) i by rewrite /F'/= valK/=. rewrite (eq_bigr (F' \o val))// (eq_bigr (mu \o F' \o val))//; last first. by move=> i _; rewrite FE. rewrite -measure_semi_additive//. - by move=> k; rewrite /F'; case: insubP => /=. - apply/trivIsetP=> i j _ _; rewrite /F'. do 2?[case: insubP; rewrite ?(set0I, setI0)//= => ? _ <-]. by move/trivIsetP: tF; apply. - by rewrite (eq_bigr (F' \o val)) in mUF. Qed. Lemma measure_semi_additive_ord_I (F : nat -> set T) (n : nat) : (forall k, (k < n)%N -> measurable (F k)) -> trivIset `I_n F -> measurable (\big[setU/set0]_(k < n) F k) -> mu (\big[setU/set0]_(i < n) F i) = \sum_(i < n) mu (F i). Proof. move=> mF tF; apply: measure_semi_additive_ord. by move=> k; apply: mF. by rewrite trivIset_comp// ?(image_eq [surjfun of val])//; apply: 'inj_val. Qed. Lemma content_fin_bigcup (I : choiceType) (D : set I) (F : I -> set T) : finite_set D -> trivIset D F -> (forall i, D i -> measurable (F i)) -> measurable (\bigcup_(i in D) F i) -> mu (\bigcup_(i in D) F i) = \sum_(i \in D) mu (F i). Proof. elim/choicePpointed: I => I in D F *. by rewrite !emptyE => *; rewrite fsbig_set0 bigcup0. move=> [n /ppcard_eqP[f]] Ftriv Fm UFm. rewrite -(image_eq [surjfun of f^-1%FUN])/= in UFm Ftriv *. rewrite bigcup_image fsbig_image//= bigcup_mkord -fsbig_ord/= in UFm *. rewrite (@measure_semi_additive_ord_I (F \o f^-1))//= 1?trivIset_comp//. by move=> k kn; apply: Fm; exact: funS. Qed. Lemma measure_semi_additive2 : semi_additive2 mu. Proof. exact/semi_additiveW. Qed. Hint Resolve measure_semi_additive2 : core. End additive_measure_on_semiring_of_sets. Arguments measure0 {d R T} _. #[global] Hint Extern 0 (is_true (0 <= (_ : {additive_measure set _ -> \bar _}) _)%E) => solve [apply: measure_ge0] : core. #[global] Hint Resolve measure0 measure_semi_additive2 measure_semi_additive : core. Section additive_measure_on_ring_of_sets. Variables (d : measure_display) (R : realFieldType)(T : ringOfSetsType d) (mu : {additive_measure set T -> \bar R}). Lemma measureU : additive2 mu. Proof. by rewrite -semi_additive2E. Qed. Lemma measure_bigsetU : additive mu. Proof. by rewrite -semi_additiveE. Qed. Lemma measure_fin_bigcup (I : choiceType) (D : set I) (F : I -> set T) : finite_set D -> trivIset D F -> (forall i, D i -> measurable (F i)) -> mu (\bigcup_(i in D) F i) = \sum_(i \in D) mu (F i). Proof. move=> Dfin Ftriv Fm; rewrite content_fin_bigcup//. exact: fin_bigcup_measurable. Qed. Lemma measure_bigsetU_ord_cond n (P : {pred 'I_n}) (F : 'I_n -> set T) : (forall i : 'I_n, P i -> measurable (F i)) -> trivIset P F -> mu (\big[setU/set0]_(i < n | P i) F i) = (\sum_(i < n | P i) mu (F i))%E. Proof. move=> mF tF; rewrite !(big_mkcond P)/= measure_semi_additive_ord//. - by apply: eq_bigr => i _; rewrite (fun_if mu) measure0. - by move=> k; case: ifP => //; apply: mF. - by rewrite -patch_pred trivIset_restr setIT. - by apply: bigsetU_measurable=> k _; case: ifP => //; apply: mF. Qed. Lemma measure_bigsetU_ord n (P : {pred 'I_n}) (F : 'I_n -> set T) : (forall i : 'I_n, measurable (F i)) -> trivIset setT F -> mu (\big[setU/set0]_(i < n | P i) F i) = (\sum_(i < n | P i) mu (F i))%E. Proof. by move=> mF tF; rewrite measure_bigsetU_ord_cond//; apply: sub_trivIset tF. Qed. Lemma measure_fbigsetU (I : choiceType) (A : {fset I}) (F : I -> set T) : (forall i, i \in A -> measurable (F i)) -> trivIset [set` A] F -> mu (\big[setU/set0]_(i <- A) F i) = (\sum_(i <- A) mu (F i))%E. Proof. by move=> mF tF; rewrite -bigcup_fset measure_fin_bigcup// -fsbig_seq. Qed. End additive_measure_on_ring_of_sets. #[global] Hint Resolve measureU measure_bigsetU : core. HB.mixin Record isMeasure0 d (R : numFieldType) (T : semiRingOfSetsType d) mu of isAdditiveMeasure d R T mu := { measure_semi_sigma_additive : semi_sigma_additive mu }. #[short(type=measure)] HB.structure Definition Measure d (R : numFieldType) (T : semiRingOfSetsType d) := {mu of isMeasure0 d R T mu & AdditiveMeasure d mu}. Notation "{ 'measure' 'set' T '->' '\bar' R }" := (measure R T) (at level 36, T, R at next level, format "{ 'measure' 'set' T '->' '\bar' R }") : ring_scope. Section measure_signed. Variables (d : _) (R : numFieldType) (T : semiRingOfSetsType d). Variable mu : {measure set T -> \bar R}. Lemma measure_snum_subproof S : Signed.spec 0 ?=0 >=0 (mu S). Proof. exact: measure_ge0. Qed. Canonical measure_snum S := Signed.mk (measure_snum_subproof S). End measure_signed. HB.factory Record isMeasure d (R : realFieldType) (T : semiRingOfSetsType d) (mu : set T -> \bar R) := { measure0 : mu set0 = 0 ; measure_ge0 : forall x, 0 <= mu x ; measure_semi_sigma_additive : semi_sigma_additive mu }. HB.builders Context d (R : realFieldType) (T : semiRingOfSetsType d) (mu : set T -> \bar R) of isMeasure d R T mu. Let semi_additive_mu : semi_additive mu. Proof. apply: semi_sigma_additive_is_additive. - exact: measure0. - exact: measure_semi_sigma_additive. Qed. HB.instance Definition _ := isAdditiveMeasure.Build d R T mu measure_ge0 semi_additive_mu. HB.instance Definition _ := isMeasure0.Build d R T mu measure_semi_sigma_additive. HB.end. Lemma eq_measure (d : measure_display) (T : measurableType d) (R : realType) (m1 m2 : {measure set T -> \bar R}) : (m1 = m2 :> (set T -> \bar R)) -> m1 = m2. Proof. move: m1 m2 => [m1 [[m10 m1ge0 [m1sa]]]] [m2 [[+ + [+]]]] /= m1m2. rewrite -{}m1m2 => m10' m1ge0' m1sa'; f_equal. by rewrite (_ : m10' = m10)// (_ : m1ge0' = m1ge0)// (_ : m1sa' = m1sa). Qed. Section measure_lemmas. Variables (d : measure_display) (R : realFieldType) (T : semiRingOfSetsType d). Variable mu : {measure set T -> \bar R}. Lemma measure_semi_bigcup A : (forall i : nat, measurable (A i)) -> trivIset setT A -> measurable (\bigcup_n A n) -> mu (\bigcup_n A n) = \sum_(i Am Atriv /measure_semi_sigma_additive/cvg_lim<-//. Qed. End measure_lemmas. Section measure_lemmas. Variables (d : measure_display) (R : realFieldType) (T : measurableType d). Variable mu : {measure set T -> \bar R}. Lemma measure_sigma_additive : sigma_additive mu. Proof. by rewrite -semi_sigma_additiveE //; apply: measure_semi_sigma_additive. Qed. Lemma measure_bigcup A : (forall i : nat, measurable (A i)) -> trivIset setT A -> mu (\bigcup_n A n) = \sum_(i Am Atriv; rewrite measure_semi_bigcup//; exact: bigcupT_measurable. Qed. End measure_lemmas. Arguments measure_bigcup {d R T} mu A. #[global] Hint Extern 0 (_ set0 = 0) => solve [apply: measure0] : core. #[global] Hint Extern 0 (sigma_additive _) => solve [apply: measure_sigma_additive] : core. #[global] Hint Extern 0 (is_true (0 <= _)) => solve [apply: measure_ge0] : core. Section pushforward_measure. Local Open Scope ereal_scope. Variables (d d' : measure_display). Variables (T1 : measurableType d) (T2 : measurableType d') (f : T1 -> T2). Hypothesis mf : measurable_fun setT f. Variables (R : realFieldType) (m : {measure set T1 -> \bar R}). Definition pushforward A := m (f @^-1` A). Let pushforward0 : pushforward set0 = 0. Proof. by rewrite /pushforward preimage_set0 measure0. Qed. Let pushforward_ge0 A : 0 <= pushforward A. Proof. by apply: measure_ge0; rewrite -[X in measurable X]setIT; apply: mf. Qed. Let pushforward_sigma_additive : semi_sigma_additive pushforward. Proof. move=> F mF tF mUF; rewrite /pushforward preimage_bigcup. apply: measure_semi_sigma_additive. - by move=> n; rewrite -[X in measurable X]setTI; exact: mf. - apply/trivIsetP => /= i j _ _ ij; rewrite -preimage_setI. by move/trivIsetP : tF => /(_ _ _ _ _ ij) ->//; rewrite preimage_set0. - by rewrite -preimage_bigcup -[X in measurable X]setTI; exact: mf. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ pushforward pushforward0 pushforward_ge0 pushforward_sigma_additive. End pushforward_measure. Section dirac_measure. Local Open Scope ereal_scope. Variables (d : measure_display) (T : measurableType d) (a : T). Variable (R : realFieldType). Definition dirac (A : set T) : \bar R := (\1_A a)%:E. Let dirac0 : dirac set0 = 0. Proof. by rewrite /dirac indic0. Qed. Let dirac_ge0 B : 0 <= dirac B. Proof. by rewrite /dirac indicE. Qed. Let dirac_sigma_additive : semi_sigma_additive dirac. Proof. move=> F mF tF mUF; rewrite /dirac indicE; have [|aFn] /= := boolP (a \in _). rewrite inE => -[n _ Fna]. have naF m : m != n -> a \notin F m. move=> mn; rewrite notin_set => Fma. move/trivIsetP : tF => /(_ _ _ Logic.I Logic.I mn). by rewrite predeqE => /(_ a)[+ _]; exact. apply/cvg_ballP => _/posnumP[e]; rewrite near_map; near=> m. have mn : (n < m)%N by near: m; exists n.+1. rewrite big_mkord (bigID (xpred1 (Ordinal mn)))//= big_pred1_eq/= big1/=. by rewrite adde0 indicE mem_set//; exact: ballxx. by move=> j ij; rewrite indicE (negbTE (naF _ _)). rewrite [X in X --> _](_ : _ = cst 0); first exact: cvg_cst. apply/funext => n; rewrite big1// => i _; rewrite indicE; apply/eqP. by rewrite eqe pnatr_eq0 eqb0; apply: contra aFn => /[!inE] aFn; exists i. Unshelve. all: by end_near. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ dirac dirac0 dirac_ge0 dirac_sigma_additive. End dirac_measure. Arguments dirac {d T} _ {R}. Notation "\d_ a" := (dirac a) : ring_scope. Lemma diracE d (T : measurableType d) (R : realFieldType) a (A : set T) : \d_a A = (a \in A)%:R%:E :> \bar R. Proof. by rewrite /dirac indicE. Qed. Section dirac_lemmas. Local Open Scope ereal_scope. Variables (d : measure_display) (T : measurableType d) (R : realType). Lemma finite_card_dirac (A : set T) : finite_set A -> \esum_(i in A) \d_ i A = (#|` fset_set A|%:R)%:E :> \bar R. Proof. move=> finA. rewrite -sum_fset_set// big_seq_cond (eq_bigr (fun=> 1)) -?big_seq_cond. by rewrite card_fset_sum1// natr_sum -sumEFin. by move=> i; rewrite andbT in_fset_set//= /dirac indicE => ->. Qed. Lemma infinite_card_dirac (A : set T) : infinite_set A -> \esum_(i in A) \d_ i A = +oo :> \bar R. Proof. move=> infA; apply/eq_pinftyP => r r0. have [B BA Br] := infinite_set_fset `|ceil r| infA. apply: esum_ge; exists B => //; apply: (@le_trans _ _ `|ceil r|%:R%:E). by rewrite lee_fin natr_absz gtr0_norm ?ceil_gt0// ceil_ge. move: Br; rewrite -(@ler_nat R) -lee_fin => /le_trans; apply. rewrite big_seq (eq_bigr (cst 1))/=; last first. by move=> i Bi; rewrite /dirac indicE mem_set//; exact: BA. by rewrite -big_seq card_fset_sum1 sumEFin natr_sum. Qed. End dirac_lemmas. Section measure_sum. Local Open Scope ereal_scope. Variables (d : measure_display) (T : measurableType d) (R : realType). Variables (m : {measure set T -> \bar R}^nat) (n : nat). Definition msum (A : set T) : \bar R := \sum_(k < n) m k A. Let msum0 : msum set0 = 0. Proof. by rewrite /msum big1. Qed. Let msum_ge0 B : 0 <= msum B. Proof. by rewrite /msum; apply: sume_ge0. Qed. Let msum_sigma_additive : semi_sigma_additive msum. Proof. move=> F mF tF mUF; rewrite [X in _ --> X](_ : _ = lim (fun n => \sum_(0 <= i < n) msum (F i))). by apply: is_cvg_ereal_nneg_natsum => k _; exact: sume_ge0. rewrite nneseries_sum//; apply: eq_bigr => /= i _. exact: measure_semi_bigcup. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ msum msum0 msum_ge0 msum_sigma_additive. End measure_sum. Arguments msum {d T R}. Section measure_zero. Local Open Scope ereal_scope. Variables (d : measure_display) (T : measurableType d) (R : realType). Definition mzero (A : set T) : \bar R := 0. Let mzero0 : mzero set0 = 0. Proof. by []. Qed. Let mzero_ge0 B : 0 <= mzero B. Proof. by []. Qed. Let mzero_sigma_additive : semi_sigma_additive mzero. Proof. move=> F mF tF mUF; rewrite [X in X --> _](_ : _ = cst 0); first exact: cvg_cst. by apply/funext => n; rewrite big1. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ mzero mzero0 mzero_ge0 mzero_sigma_additive. End measure_zero. Arguments mzero {d T R}. Lemma msum_mzero (d : _) (T : measurableType d) (R : realType) (m_ : {measure set T -> \bar R}^nat) : msum m_ 0 = mzero. Proof. by apply/funext => A/=; rewrite /msum big_ord0. Qed. Section measure_add. Local Open Scope ereal_scope. Variables (d : measure_display) (T : measurableType d) (R : realType). Variables (m1 m2 : {measure set T -> \bar R}). Definition measure_add := msum (fun n => if n is 0%N then m1 else m2) 2. Lemma measure_addE A : measure_add A = m1 A + m2 A. Proof. by rewrite /measure_add/= /msum 2!big_ord_recl/= big_ord0 adde0. Qed. End measure_add. Section measure_scale. Local Open Scope ereal_scope. Variables (d : measure_display) (T : measurableType d) (R : realFieldType). Variables (r : {nonneg R}) (m : {measure set T -> \bar R}). Definition mscale (A : set T) : \bar R := r%:num%:E * m A. Let mscale0 : mscale set0 = 0. Proof. by rewrite /mscale measure0 mule0. Qed. Let mscale_ge0 B : 0 <= mscale B. Proof. by rewrite /mscale mule_ge0. Qed. Let mscale_sigma_additive : semi_sigma_additive mscale. Proof. move=> F mF tF mUF; rewrite [X in X --> _](_ : _ = (fun n => (r%:num)%:E * \sum_(0 <= i < n) m (F i))); last first. by apply/funext => k; rewrite ge0_sume_distrr. rewrite /mscale; have [->|r0] := eqVneq r%:num 0%R. rewrite mul0e [X in X --> _](_ : _ = (fun=> 0)); first exact: cvg_cst. by under eq_fun do rewrite mul0e. by apply: ereal_cvgrM => //; exact: measure_semi_sigma_additive. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ mscale mscale0 mscale_ge0 mscale_sigma_additive. End measure_scale. Arguments mscale {d T R}. Section measure_series. Local Open Scope ereal_scope. Variables (d : measure_display) (T : measurableType d) (R : realType). Variables (m : {measure set T -> \bar R}^nat) (n : nat). Definition mseries (A : set T) : \bar R := \sum_(n <= k F mF tF mUF; rewrite [X in _ --> X](_ : _ = lim (fun n => \sum_(0 <= i < n) mseries (F i))); last first. rewrite [in LHS]/mseries. transitivity (\sum_(n <= k m k (\bigcup_n0 F n0))) => i ni. exact: measure_semi_bigcup. rewrite ereal_series nneseries_interchange//. apply: (@eq_nneseries R (fun j => \sum_(i \sum_(n <= k i _; rewrite ereal_series. apply: is_cvg_ereal_nneg_natsum => k _. by rewrite /mseries ereal_series; exact: nneseries_lim_ge0. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ mseries mseries0 mseries_ge0 mseries_sigma_additive. End measure_series. Arguments mseries {d T R}. Definition mrestr d (T : measurableType d) (R : realFieldType) (D : set T) (f : set T -> \bar R) (mD : measurable D) := fun X => f (X `&` D). Section measure_restr. Variables (d : measure_display) (T : measurableType d) (R : realFieldType). Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D). Local Notation restr := (mrestr mu mD). Let restr0 : restr set0 = 0%E. Proof. by rewrite /mrestr set0I measure0. Qed. Let restr_ge0 (A : set _) : (0 <= restr A)%E. Proof. by rewrite /restr; apply: measure_ge0; exact: measurableI. Qed. Let restr_sigma_additive : semi_sigma_additive restr. Proof. move=> F mF tF mU; pose FD i := F i `&` D. have mFD i : measurable (FD i) by exact: measurableI. have tFD : trivIset setT FD. apply/trivIsetP => i j _ _ ij. move/trivIsetP : tF => /(_ i j Logic.I Logic.I ij). by rewrite /FD setIACA => ->; rewrite set0I. by rewrite /restr setI_bigcupl; exact: measure_sigma_additive. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ restr restr0 restr_ge0 restr_sigma_additive. End measure_restr. Section measure_count. Variables (d : _) (T : measurableType d) (R : realType). Variables (D : set T) (mD : measurable D). Definition counting (X : set T) : \bar R := if `[< finite_set X >] then (#|` fset_set X |)%:R%:E else +oo. Let counting0 : counting set0 = 0. Proof. by rewrite /counting asboolT// fset_set0. Qed. Let counting_ge0 (A : set _) : 0 <= counting A. Proof. by rewrite /counting; case: ifPn; rewrite ?lee_fin// lee_pinfty. Qed. Let counting_sigma_additive : semi_sigma_additive counting. Proof. move=> F mF tF mU. have [[i Fi]|infinF] := pselect (exists k, infinite_set (F k)). have -> : counting (\bigcup_n F n) = +oo. rewrite /counting asboolF//. by apply: contra_not Fi; exact/sub_finite_set/bigcup_sup. apply/ereal_cvgPpinfty => M M0; near=> n. have ni : (i < n)%N by near: n; exists i.+1. rewrite (bigID (xpred1 i))/= big_mkord (big_pred1 (Ordinal ni))//=. rewrite [X in X + _]/counting asboolF// addye ?leey//. by rewrite gt_eqF// (@lt_le_trans _ _ 0)//; exact: sume_ge0. have {infinF}finF : forall i, finite_set (F i) by exact/not_forallP. pose u : nat^nat := fun n => #|` fset_set (F n) |. have sumFE n : \sum_(i < n) counting (F i) = #|` fset_set (\big[setU/set0]_(k < n) F k) |%:R%:E. rewrite -trivIset_sum_card// natr_sum -sumEFin. by apply eq_bigr => // i _; rewrite /counting asboolT. have [cvg_u|dvg_u] := pselect (cvg (nseries u)). have [N _ Nu] : \forall n \near \oo, u n = 0%N by apply: cvg_nseries_near. rewrite [X in _ --> X](_ : _ = \sum_(i < N) counting (F i)); last first. have -> : \bigcup_i (F i) = \big[setU/set0]_(i < N) F i. rewrite (bigcupID (`I_N)) setTI bigcup_mkord. rewrite [X in _ `|` X](_ : _ = set0) ?setU0// bigcup0// => i [_ /negP]. by rewrite -leqNgt => /Nu/eqP/[!cardfs_eq0]/eqP/fset_set_set0 ->. by rewrite /counting /= asboolT ?sumFE// -bigcup_mkord; exact: bigcup_finite. rewrite -(cvg_shiftn N)/=. rewrite (_ : (fun n => _) = (fun=> \sum_(i < N) counting (F i))). exact: cvg_cst. apply/funext => n; rewrite /index_iota subn0 (addnC n) iotaD big_cat/=. rewrite [X in _ + X](_ : _ = 0) ?adde0. by rewrite -{1}(subn0 N) big_mkord. rewrite add0n big_seq big1// => i /[!mem_iota] => /andP[NI iNn]. by rewrite /counting asboolT//= -/(u _) Nu. have {dvg_u}cvg_F : (fun n => \sum_(i < n) counting (F i)) --> +oo. rewrite (_ : (fun n => _) = [sequence (\sum_(0 <= i < n) (u i))%:R%:E]_n). exact/dvg_ereal_cvg/nat_dvg_real/dvg_nseries. apply/funext => n /=; under eq_bigr. by rewrite /counting => i _; rewrite asboolT//; over. by rewrite sumEFin natr_sum big_mkord. have [UFoo|/contrapT[k UFk]] := pselect (infinite_set (\bigcup_n F n)). rewrite /counting asboolF//. by under eq_fun do rewrite big_mkord. exfalso. move: cvg_F =>/ereal_cvgPpinfty/(_ k.+1%:R)/[!ltr0n]/(_ erefl)[K _]. move=> /(_ K (leqnn _)); rewrite leNgt => /negP; apply. rewrite sumFE lte_fin ltr_nat ltnS. have -> : k = #|` fset_set (\bigcup_n F n) |. by apply/esym/card_eq_fsetP; rewrite fset_setK//; exists k. apply/fsubset_leq_card; rewrite -fset_set_sub //. - by move=> /= t; rewrite -bigcup_mkord => -[m _ Fmt]; exists m. - by rewrite -bigcup_mkord; exact: bigcup_finite. - by exists k. Unshelve. all: by end_near. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ counting counting0 counting_ge0 counting_sigma_additive. End measure_count. Lemma sigma_finite_counting (R : realType) : sigma_finite [set: nat] (counting R). Proof. exists (fun n => `I_n.+1); first by apply/seteqP; split=> //x _; exists x => /=. by move=> k; split => //; rewrite /counting/= asboolT// ltey. Qed. Lemma big_trivIset (I : choiceType) D T (R : Type) (idx : R) (op : Monoid.com_law idx) (A : I -> set T) (F : set T -> R) : finite_set D -> trivIset D A -> F set0 = idx -> \big[op/idx]_(i <- fset_set D) F (A i) = \big[op/idx]_(X <- (A @` fset_set D)%fset) F X. Proof. elim/Pchoice: R => R in idx op F *. move=> Dfin Atriv F0; symmetry. pose D' := [fset i in fset_set D | A i != set0]%fset. transitivity (\big[op/idx]_(X <- (A @` D')%fset) F X). apply: perm_big_supp; rewrite uniq_perm ?filter_uniq//=. move=> X; rewrite !mem_filter; case: (eqVneq (F X) idx) => //= FXNidx. apply/imfsetP/imfsetP=> -[i/=]; rewrite ?(inE, in_fset_set)//=. move=> Di XAi; exists i; rewrite // !(inE, in_fset_set)//=. by rewrite (mem_set Di)/= -XAi; apply: contra_neq FXNidx => ->. by move=> /andP[Di AiN0] XAi; exists i; rewrite ?in_fset_set. rewrite big_imfset//=; last first. move=> i j; rewrite !(inE, in_fset_set)//= => /andP[+ +] /andP[+ +]. rewrite !inE => Di /set0P[x Aix] Dj _ Aij. by apply: (Atriv _ _ Di Dj); exists x; split=> //; rewrite -Aij. apply: perm_big_supp; rewrite uniq_perm ?filter_uniq//= => i. rewrite !mem_filter; case: (eqVneq (F (A i)) idx) => //= FAiidx. rewrite !(in_fset_set, inE)//=; case: (boolP (i \in D)) => //= Di. by apply: contra_neq FAiidx => ->. Qed. Section covering. Context {T : Type}. Implicit Type (C : forall I, set (set I)). Implicit Type (P : forall I, set I -> set (I -> set T)). Definition covered_by C P := [set X : set T | exists I D A, [/\ C I D, P I D A & X = \bigcup_(i in D) A i]]. Lemma covered_bySr C P P' : (forall I D A, P I D A -> P' I D A) -> covered_by C P `<=` covered_by C P'. Proof. by move=> PP' X [I [D [A [CX PX ->]]]]; exists I, D, A; split=> //; apply: PP'. Qed. Lemma covered_byP C P I D A : C I D -> P I D A -> covered_by C P (\bigcup_(i in D) A i). Proof. by move=> CID PIDA; exists I, D, A. Qed. Lemma covered_by_finite P : (forall I (D : set I) A, (forall i, D i -> A i = set0) -> P I D A) -> (forall (I : pointedType) D A, finite_set D -> P I D A -> P nat `I_#|` fset_set D| (A \o nth point (fset_set D))) -> covered_by (@finite_set) P = [set X : set T | exists n A, [/\ P nat `I_n A & X = \bigcup_(i in `I_n) A i]]. Proof. move=> P0 Pc; apply/predeqP=> X; rewrite /covered_by /cover/=; split; last first. by move=> [n [A [Am ->]]]; exists nat, `I_n, A; split. case; elim/Ppointed=> I [D [A [Dfin Am ->]]]. exists 0%N, (fun=> set0); split; first by rewrite II0; apply: P0. by rewrite //= emptyE II0 !bigcup0. exists #|`fset_set D|, (A \o nth point (fset_set D)). split; first exact: Pc. by rewrite bigcup_fset_set// (big_nth point) big_mkord bigcup_mkord. Qed. Lemma covered_by_countable P : (forall I (D : set I) A, (forall i, D i -> A i = set0) -> P I D A) -> (forall (I : pointedType) (D : set I) (A : I -> set T) (f : nat -> I), set_surj [set: nat] D f -> P I D A -> P nat [set: nat] (A \o f)) -> covered_by (@countable) P = [set X : set T | exists A, [/\ P nat [set: nat] A & X = \bigcup_i A i]]. Proof. move=> P0 Pc; apply/predeqP=> X; rewrite /covered_by /cover/=; split; last first. by move=> [A [Am ->]]; exists nat, [set: nat], A; split. case; elim/Ppointed=> I [D [A [Dcnt Am ->]]]. exists (fun=> set0); split; first exact: P0. by rewrite emptyE bigcup_set0 bigcup0. have /pfcard_geP[->|[f]] := Dcnt. exists (fun=> set0); split; first exact: P0. by rewrite !bigcup_set0 bigcup0. pose g := [splitsurjfun of split f]. exists (A \o g); split=> /=; first exact: Pc Am. apply/predeqP=> x; split=> [[i Di Aix]|[n _ Afnx]]. by exists (g^-1%FUN i) => //=; rewrite invK// inE. by exists (g n) => //; apply: funS. Qed. End covering. Module SetRing. Definition type (T : Type) := T. Definition display : measure_display -> measure_display. Proof. by []. Qed. Section SetRing. Context d {T : semiRingOfSetsType d}. Notation rT := (type T). Canonical ring_eqType := EqType rT ptclass. Canonical ring_choiceType := ChoiceType rT ptclass. Canonical ring_ptType := PointedType rT ptclass. #[export] HB.instance Definition _ := isRingOfSets.Build (display d) rT ptclass (@setring0 T measurable) (@setringU T measurable) (@setringDI T measurable). Local Notation "d .-ring" := (display d) (at level 1, format "d .-ring"). Local Notation "d .-ring.-measurable" := ((d%mdisp.-ring).-measurable : set (set (type _))). Local Definition measurable_fin_trivIset : set (set T) := [set A | exists B : set (set T), [/\ A = \bigcup_(X in B) X, forall X : set T, B X -> measurable X, finite_set B & trivIset B id]]. Lemma ring_measurableE : d.-ring.-measurable = measurable_fin_trivIset. Proof. apply/seteqP; split; last first. move=> _ [B [-> Bm Bfin Btriv]]; apply: fin_bigcup_measurable => //. by move=> i Di; apply: sub_gen_smallest; apply: Bm. have mdW A : measurable A -> measurable_fin_trivIset A. move=> Am; exists [set A]; split; do ?by [rewrite bigcup_set1|move=> ? ->|]. by move=> ? ? -> ->. have mdI : setI_closed measurable_fin_trivIset. move=> _ _ [A [-> Am Afin Atriv]] [B [-> Bm Bfin Btriv]]. rewrite setI_bigcupl; under eq_bigcupr do rewrite setI_bigcupr. rewrite bigcup_bigcup -(bigcup_image _ _ id). eexists; split; [reflexivity | | exact/finite_image/finite_setM |]. by move=> _ [X [? ?] <-]; apply: measurableI; [apply: Am|apply: Bm]. apply: trivIset_sets => -[a b] [a' b']/= [Xa Xb] [Xa' Xb']; rewrite setIACA. by move=> [x [Ax Bx]]; rewrite (Atriv a a') 1?(Btriv b b')//; exists x. have mdisj_bigcap : finN0_bigcap_closed measurable_fin_trivIset. exact/finN0_bigcap_closedP/mdI. have mDbigcup I (D : set I) (A : set T) (B : I -> set T) : finite_set D -> measurable A -> (forall i, D i -> measurable (B i)) -> measurable_fin_trivIset (A `\` \bigcup_(i in D) B i). have [->|/set0P D0] := eqVneq D set0. by rewrite bigcup0// setD0 => *; apply: mdW. move=> Dfin Am Bm; rewrite -bigcupDr//; apply: mdisj_bigcap=> // i Di. by have [F [Ffin Fm -> ?]] := semi_measurableD A (B i) Am (Bm _ Di); exists F. have mdU : fin_trivIset_closed measurable_fin_trivIset. elim/Pchoice=> I D F Dfin Ftriv Fm. have /(_ _ (set_mem _))/cid-/(all_sig_cond_dep (fun=> set0)) [G /(_ _ (mem_set _))GP] := Fm _ _. under eq_bigcupr => i Di do case: (GP i Di) => ->. rewrite bigcup_bigcup_dep -(bigcup_image _ _ id); eexists; split=> //. - by move=> _ [i [Di Gi] <-]; have [_ + _ _] := GP i.1 Di; apply. - by apply: finite_image; apply: finite_setMR=> // i Di; have [] := GP i Di. apply: trivIset_sets => -[i X] [j Y] /= [Di Gi] [Dj Gj] XYN0. suff eqij : i = j. by rewrite {i}eqij in Di Gi *; have [_ _ _ /(_ _ _ _ _ XYN0)->] := GP j Dj. apply: Ftriv => //; have [-> _ _ _] := GP j Dj; have [-> _ _ _] := GP i Di. by case: XYN0 => [x [Xx Yx]]; exists x; split; [exists X|exists Y]. have mdDI : setDI_closed measurable_fin_trivIset. move=> A B mA mB; have [F [-> Fm Ffin Ftriv]] := mA. have [F' [-> F'm F'fin F'triv]] := mB. have [->|/set0P F'N0] := eqVneq F' set0. by rewrite bigcup_set0 setD0; exists F. rewrite setD_bigcupl; apply: mdU => //; first by apply: trivIset_setIr. move=> X DX; rewrite -bigcupDr//; apply: mdisj_bigcap => //. move=> Y DY; case: (semi_measurableD X Y); [exact: Fm|exact: F'm|]. by move=> G [Gfin Gm -> Gtriv]; exists G. apply: smallest_sub => //; split=> //; first by apply: mdW. move=> A B mA mB; rewrite -(setUIDK B A) setUA [X in X `|` _]setUidl//. rewrite -bigcup2inE; apply: mdU => //; last by move=> [|[]]// _; apply: mdDI. by move=> [|[]]// [|[]]//= _ _ []; rewrite setDE ?setIA => X [] []//. Qed. Lemma ring_fsets (A : set rT) : measurable A -> exists B : set (set T), [/\ finite_set B, (forall X, B X -> X !=set0), trivIset B id, (forall X : set T, X \in B -> measurable X) & A = \bigcup_(X in B) X]. Proof. rewrite ring_measurableE => -[B [-> Bm Bfin Btriv]]. exists (B `&` [set X | X != set0]); split. - by apply: sub_finite_set Bfin; exact: subIsetl. - by move=> ?/= [_ /set0P]. - by move=> X Y/= [XB _] [YB _]; exact: Btriv. - by move=> X/= /[!inE] -[] /Bm. rewrite bigcup_mkcondr; apply eq_bigcupr => X Bx; case: ifPn => //. by rewrite notin_set/= => /negP/negPn/eqP. Qed. Definition decomp (A : set rT) : set (set T) := if A == set0 then [set set0] else if pselect (measurable A) is left mA then projT1 (cid (ring_fsets mA)) else [set A]. Lemma decomp_finite_set (A : set rT) : finite_set (decomp A). Proof. rewrite /decomp; case: ifPn => // A0; case: pselect => // X. by case: cid => /= ? []. Qed. Lemma decomp_triv (A : set rT) : trivIset (decomp A) id. Proof. rewrite /decomp; case: ifP => _; first by move=> i j/= -> ->. case: pselect => // Am; first by case: cid => //= ? []. by move=> i j /= -> ->. Qed. Hint Resolve decomp_triv : core. Lemma all_decomp_neq0 (A : set rT) : A !=set0 -> (forall X, decomp A X -> X !=set0). Proof. move=> /set0P AN0; rewrite /decomp/= (negPf AN0). case: pselect => //= Am; first by case: cid => //= ? []. by move=> X ->; exact/set0P. Qed. Lemma decomp_neq0 (A : set rT) X : A !=set0 -> X \in decomp A -> X !=set0. Proof. by move=> /all_decomp_neq0/(_ X) /[!inE]. Qed. Lemma decomp_measurable (A : set rT) (X : set T) : measurable A -> X \in decomp A -> measurable X. Proof. rewrite /decomp; case: ifP => _; first by rewrite inE => _ ->. by case: pselect => // Am _; case: cid => //= ? [_ _ _ + _]; apply. Qed. Lemma cover_decomp (A : set rT) : \bigcup_(X in decomp A) X = A. Proof. rewrite /decomp; case: ifP => [/eqP->|_]; first by rewrite bigcup0. case: pselect => // Am; first by case: cid => //= ? []. by rewrite bigcup_set1. Qed. Lemma decomp_sub (A : set rT) (X : set T) : X \in decomp A -> X `<=` A. Proof. rewrite /decomp; case: ifP => _; first by rewrite inE/= => ->//. case: pselect => //= Am; last by rewrite inE => ->. by case: cid => //= D [_ _ _ _ ->] /[!inE] XD; apply: bigcup_sup. Qed. Lemma decomp_set0 : decomp set0 = [set set0]. Proof. by rewrite /decomp eqxx. Qed. Lemma decompN0 (A : set rT) : decomp A != set0. Proof. rewrite /decomp; case: ifPn => [_|AN0]; first by apply/set0P; exists set0. case: pselect=> //= Am; last by apply/set0P; exists A. case: cid=> //= D [_ _ _ _ Aeq]; apply: contra_neq AN0; rewrite Aeq => ->. by rewrite bigcup_set0. Qed. Definition measure (R : numDomainType) (mu : set T -> \bar R) (A : set rT) : \bar R := \sum_(X \in decomp A) mu X. Section additive_measure. Context {R : realFieldType} (mu : {additive_measure set T -> \bar R}). Local Notation Rmu := (measure mu). Arguments big_trivIset {I D T R idx op} A F. Lemma Rmu_fin_bigcup (I : choiceType) (D : set I) (F : I -> set T) : finite_set D -> trivIset D F -> (forall i, i \in D -> measurable (F i)) -> Rmu (\bigcup_(i in D) F i) = \sum_(i \in D) mu (F i). Proof. move=> Dfin Ftriv Fm; rewrite /measure. have mUD : measurable (\bigcup_(i in D) F i : set rT). apply: fin_bigcup_measurable => // *; apply: sub_gen_smallest. exact/Fm/mem_set. have [->|/set0P[i0 Di0]] := eqVneq D set0. by rewrite bigcup_set0 decomp_set0 fsbig_set0 fsbig_set1. set E := decomp _; have Em X := decomp_measurable mUD X. transitivity (\sum_(X \in E) \sum_(i \in D) mu (X `&` F i)). apply eq_fsbigr => /= X XE; have XDF : X = \bigcup_(i in D) (X `&` F i). by rewrite -setI_bigcupr setIidl//; exact: decomp_sub. rewrite [in LHS]XDF content_fin_bigcup//; first exact: trivIset_setI. - by move=> i /mem_set Di; apply: measurableI; [exact: Em|exact: Fm]. - by rewrite -XDF; exact: Em. rewrite exchange_fsum //; last exact: decomp_finite_set. apply eq_fsbigr => i Di; have Feq : F i = \bigcup_(X in E) (X `&` F i). rewrite -setI_bigcupl setIidr// cover_decomp. by apply/bigcup_sup; exact: set_mem. rewrite -content_fin_bigcup -?Feq//; [exact/decomp_finite_set| | |exact/Fm]. - exact/trivIset_setIr/decomp_triv. - by move=> X /= XE; apply: measurableI; [apply: Em; rewrite inE | exact: Fm]. Qed. Lemma RmuE (A : set T) : measurable A -> Rmu A = mu A. Proof. move=> Am; rewrite -[A in LHS](@bigcup_set1 _ unit _ tt). by rewrite Rmu_fin_bigcup// ?fsbig_set1// => -[]. Qed. Let Rmu0 : Rmu set0 = 0. Proof. rewrite -(bigcup_set0 (fun _ : void => set0)). by rewrite Rmu_fin_bigcup// fsbig_set0. Qed. Lemma Rmu_ge0 A : Rmu A >= 0. Proof. by rewrite sume_ge0. Qed. Lemma Rmu_additive : semi_additive Rmu. Proof. apply/(additive2P Rmu0) => // A B. move=> /ring_fsets[/= {}A [? _ Atriv Am ->]] /ring_fsets[/= {}B [? _ Btriv Bm ->]]. rewrite -subset0 => coverAB0. have AUBfin : finite_set (A `|` B) by rewrite finite_setU. have AUBtriv : trivIset (A `|` B) id. move=> X Y [] ABX [] ABY; do ?by [exact: Atriv|exact: Btriv]. by move=> [u [Xu Yu]]; case: (coverAB0 u); split; [exists X|exists Y]. by move=> [u [Xu Yu]]; case: (coverAB0 u); split; [exists Y|exists X]. rewrite -bigcup_setU !Rmu_fin_bigcup//=. - rewrite fsbigU//= => [X /= [XA XB]]; have [->//|/set0P[x Xx]] := eqVneq X set0. by case: (coverAB0 x); split; exists X. - by move=> X /set_mem [|] /mem_set ?; [exact: Am|exact: Bm]. Qed. #[export] HB.instance Definition _ := isAdditiveMeasure.Build _ _ _ Rmu Rmu_ge0 Rmu_additive. End additive_measure. End SetRing. Module Exports. Canonical ring_eqType. Canonical ring_choiceType. Canonical ring_ptType. HB.reexport SetRing. End Exports. End SetRing. Export SetRing.Exports. Notation "d .-ring" := (SetRing.display d) (at level 1, format "d .-ring") : measure_display_scope. Notation "d .-ring.-measurable" := ((d%mdisp.-ring).-measurable : set (set (SetRing.type _))) : classical_set_scope. Lemma le_measure d (R : realFieldType) (T : semiRingOfSetsType d) (mu : {additive_measure set T -> \bar R}) : {in measurable &, {homo mu : A B / A `<=` B >-> (A <= B)%E}}. Proof. move=> A B; rewrite ?inE => mA mB AB; have [|muBfin] := leP +oo%E (mu B). by rewrite leye_eq => /eqP ->; rewrite leey. rewrite -[leRHS]SetRing.RmuE// -[B](setDUK AB) measureU/= ?setDIK//. - by rewrite SetRing.RmuE ?lee_addl. - exact: sub_gen_smallest. - by apply: measurableD; exact: sub_gen_smallest. Qed. Lemma measure_le0 d (T : semiRingOfSetsType d) (R : realFieldType) (mu : {additive_measure set T -> \bar R}) (A : set T) : (mu A <= 0)%E = (mu A == 0)%E. Proof. by case: ltgtP (measure_ge0 mu A). Qed. Section more_content_semiring_lemmas. Variables (d : measure_display) (R : realFieldType) (T : semiRingOfSetsType d). Variable mu : {additive_measure set T -> \bar R}. Lemma content_sub_additive : sub_additive mu. Proof. move=> X A n Am Xm XA; pose B i := A\_`I_n i `&` X. have XE : X = \big[setU/set0]_(i < n) B i. rewrite -big_distrl/= setIidr// => x /XA/=. by rewrite -!bigcup_mkord => -[k nk Ax]; exists k; rewrite // patchT ?inE. have Bm i : measurable (B i). case: (ltnP i n) => ltin; last by rewrite /B patchC ?inE ?set0I//= leq_gtF. by rewrite /B ?patchT ?inE//; apply: measurableI => //; apply: Am. have subBA i : B i `<=` A i. by rewrite /B/patch; case: ifP; rewrite // set0I//= => _ ?. have subDUB i : seqDU B i `<=` A i by move=> x [/subBA]. have DUBm i : measurable (seqDU B i : set (SetRing.type T)). apply: measurableD; first exact: sub_gen_smallest. by apply: bigsetU_measurable => ? _; apply: sub_gen_smallest. have DU0 i : (i >= n)%N -> seqDU B i = set0. move=> leni; rewrite -subset0 => x []; rewrite /B patchC ?inE/= ?leq_gtF//. by case. rewrite -SetRing.RmuE// XE bigsetU_seqDU measure_bigsetU//. rewrite [leRHS](big_ord_widen n (mu \o A))//= [leRHS]big_mkcond/=. rewrite lee_sum => // i _; case: ltnP => ltin; last by rewrite DU0 ?measure0. rewrite -[leRHS]SetRing.RmuE; last exact: Am. by rewrite le_measure ?inE//=; last by apply: sub_gen_smallest; apply: Am. Qed. Lemma content_sub_fsum (I : choiceType) D (A : set T) (A_ : I -> set T) : finite_set D -> (forall i, D i -> measurable (A_ i)) -> measurable A -> A `<=` \bigcup_(i in D) A_ i -> mu A <= \sum_(i \in D) mu (A_ i). Proof. elim/choicePpointed: I => I in A_ D *. rewrite !emptyE bigcup_set0// subset0 => _ _ _ ->. by rewrite measure0 fsbig_set0. move=> Dfin A_m Am Asub; have [n /ppcard_eqP[f]] := Dfin. rewrite (reindex_fsbig f^-1%FUN `I_n)//= -fsbig_ord. rewrite (@content_sub_additive A (A_ \o f^-1%FUN))//=. by move=> i ltin; apply: A_m; apply: funS. rewrite (fsbig_ord _ _ (A_ \o f^-1%FUN))/= -(reindex_fsbig _ _ D)//=. by rewrite fsbig_setU. Qed. (* (* alternative proof *) *) (* Theorem semi_Boole_inequality : sub_additive mu. *) (* Proof. *) (* move=> X A n Am Xm Xsub; rewrite -SetRing.RmuE//. *) (* under eq_bigr => i do [rewrite -SetRing.RmuE; do ?by apply: Am=> /=]. *) (* pose rT := SetRing.type T. *) (* have {}Am i : `I_n i -> measurable (A i : set rT). *) (* by move=> *; apply/SetRing.measurableW/Am => /=. *) (* have {}Xm : measurable (X : set rT) by exact: SetRing.measurableW. *) (* pose ammu := [additive_measure of SetRing.measure mu]. *) (* rewrite (le_trans (le_measure ammu _ _ Xsub)) ?inE// {Xsub}. *) (* by rewrite -bigcup_mkord; apply: fin_bigcup_measurable. *) (* elim: n Am Xm => [|n IHn] Am Xm; first by rewrite !big_ord0 measure0. *) (* have Anm : measurable (A n : set rT) by apply: Am => /=. *) (* set B := \big[setU/set0]_(i < n) A i. *) (* set C := \big[setU/set0]_(i < n.+1) A i. *) (* have -> : C = B `|` (A n `\` B). *) (* suff -> : A n `\` B = C `\` B by rewrite setDUK// /C big_ord_recr/=; left. *) (* by rewrite /C big_ord_recr/= !setDE setIUl -!setDE setDv set0U. *) (* have Bm : measurable (B : set rT). *) (* by rewrite -[B]bigcup_mkord; apply: fin_bigcup_measurable => //= i /ltnW/Am. *) (* rewrite measureU // ?setDIK//; last exact: measurableD. *) (* rewrite (@le_trans _ _ (ammu B + ammu (A n))) // ?lee_add2l //; last first. *) (* by rewrite big_ord_recr /= lee_add2r// IHn// => i /ltnW/Am. *) (* by rewrite le_measure // ?inE// ?setDE//; exact: measurableD. *) (* Qed. *) End more_content_semiring_lemmas. Section content_ring_lemmas. Variables (d : measure_display) (R : realType) (T : ringOfSetsType d). Variable mu : {additive_measure set T -> \bar R}. Lemma content_ring_sup_sigma_additive (A : nat -> set T) : (forall i, measurable (A i)) -> measurable (\bigcup_i A i) -> trivIset [set: nat] A -> \sum_(i Am UAm At; rewrite ereal_lim_le//; first exact: is_cvg_nneseries. near=> n; rewrite big_mkord -measure_bigsetU//= le_measure ?inE//=. - exact: bigsetU_measurable. - by rewrite -bigcup_mkord; apply: bigcup_sub => i lein; apply: bigcup_sup. Unshelve. all: by end_near. Qed. Lemma content_ring_sigma_additive : sigma_sub_additive mu -> semi_sigma_additive mu. Proof. move=> mu_sub A Am Atriv UAm. suff <- : \sum_(i \bar R}). Local Notation Rmu := (SetRing.measure mu). Import SetRing. Lemma ring_sigma_sub_additive : sigma_sub_additive mu -> sigma_sub_additive Rmu. Proof. move=> muS; move=> /= D A Am Dm Dsub. rewrite /Rmu (eq_nneseries (fun _ _ => fsbig_esum _ _))//; last first. by move=> *; exact: decomp_finite_set. rewrite nneseries_esum ?esum_esum//=; last by move=> *; rewrite esum_ge0. set K := _ `*`` _. have /ppcard_eqP[f] : (K #= [set: nat])%card. apply: cardMR_eq_nat => [|i]. by rewrite (_ : [set _ | true] = setT)//; exact/predeqP. split; first by apply/finite_set_countable; exact: decomp_finite_set. exact/set0P/decompN0. have {Dsub} : D `<=` \bigcup_(k in K) k.2. apply: (subset_trans Dsub); apply: bigcup_sub => i _. rewrite -[A i]cover_decomp; apply: bigcup_sub => X/= XAi. by move=> x Xx; exists (i, X). rewrite -(image_eq [bij of f^-1%FUN])/=. rewrite (esum_set_image _ f^-1)//= bigcup_image => Dsub. have DXsub X : X \in decomp D -> X `<=` \bigcup_i ((f^-1%FUN i).2 `&` X). move=> XD; rewrite -setI_bigcupl -[Y in Y `<=` _](setIidr (decomp_sub XD)). by apply: setSI. have mf i : measurable ((f^-1)%function i).2. have [_ /mem_set/decomp_measurable] := 'invS_f (I : setT i). by apply; exact: Am. have mfD i X : X \in decomp D -> measurable (((f^-1)%FUN i).2 `&` X : set T). by move=> XD; apply: measurableI; [exact: mf|exact: (decomp_measurable _ XD)]. apply: (@le_trans _ _ (\sum_(i X /[!(andbT,in_fset_set)]; last exact: decomp_finite_set. move=> XD; have Xm := decomp_measurable Dm XD. by apply: muS => // [i|]; [exact: mfD|exact: DXsub]. apply: lee_lim => /=; do ?apply: is_cvg_nneseries=> //. by move=> n _; exact: sume_ge0. near=> n; rewrite [n in _ <= n]big_mkcond; apply: lee_sum => i _. rewrite ifT ?inE//. under eq_big_seq. move=> x; rewrite in_fset_set=> [xD|]; last exact: decomp_finite_set. rewrite -RmuE//; last exact: mfD. over. rewrite -fsbig_finite/=; last exact: decomp_finite_set. rewrite -measure_fin_bigcup//=. - rewrite -setI_bigcupr (cover_decomp D) -[leRHS]RmuE// ?le_measure ?inE//. by apply: measurableI => //; apply: sub_gen_smallest; apply: mf. by apply: sub_gen_smallest; apply: mf. - exact: decomp_finite_set. - by apply: trivIset_setI; apply: decomp_triv. - by move=> X /= XD; apply: sub_gen_smallest; apply: mfD; rewrite inE. Unshelve. all: by end_near. Qed. Lemma ring_sigma_additive : sigma_sub_additive mu -> semi_sigma_additive Rmu. Proof. move=> mu_sub; apply: content_ring_sigma_additive. by apply: ring_sigma_sub_additive. Qed. End ring_sigma_sub_additive_content. Section more_premeasure_ring_lemmas. Variables (d : measure_display) (R : realType) (T : semiRingOfSetsType d). Variable mu : {measure set T -> \bar R}. Import SetRing. Lemma measure_sigma_sub_additive : sigma_sub_additive mu. Proof. move=> X A Am Xm XA; pose B i := A i `&` X. have XE : X = \bigcup_i B i by rewrite -setI_bigcupl setIidr. have Bm i : measurable (B i) by rewrite /B; apply: measurableI. have subBA i : B i `<=` A i by rewrite /B. have subDUB i : seqDU B i `<=` A i by move=> x [/subBA]. have DUBm i : measurable (seqDU B i : set (SetRing.type T)). by apply: measurableD => //; do 1?apply: bigsetU_measurable => *; apply: sub_gen_smallest. rewrite XE; move: (XE); rewrite seqDU_bigcup_eq. under eq_bigcupr do rewrite -[seqDU B _]cover_decomp//. rewrite bigcup_bigcup_dep; set K := _ `*`` _. have /ppcard_eqP[f] : (K #= [set: nat])%card. apply: cardMR_eq_nat=> // i; split; last by apply/set0P; rewrite decompN0. exact/finite_set_countable/decomp_finite_set. pose f' := f^-1%FUN; rewrite -(image_eq [bij of f'])/= bigcup_image/=. pose g n := (f' n).2; have fVtriv : trivIset [set: nat] g. move=> i j _ _; rewrite /g. have [/= _ f'iB] : K (f' i) by apply: funS. have [/= _ f'jB] : K (f' j) by apply: funS. have [f'ij|f'ij] := eqVneq (f' i).1 (f' j).1. move=> /(decomp_triv f'iB)/=; rewrite f'ij => /(_ f'jB) f'ij2. apply: 'inj_f'; rewrite ?inE//= -!/(f' _); move: f'ij f'ij2. by case: (f' i) (f' j) => [? ?] [? ?]//= -> ->. move=> [x [f'ix f'jx]]; have Bij := @trivIset_seqDU _ B (f' i).1 (f' j).1 I I. rewrite Bij ?eqxx// in f'ij; exists x; split. - by move/mem_set : f'iB => /decomp_sub; apply. - by move/mem_set : f'jB => /decomp_sub; apply. have g_inj : set_inj [set i | g i != set0] g. by apply: trivIset_inj=> [i /set0P//|]; apply: sub_trivIset fVtriv. move=> XEbig; rewrite measure_semi_bigcup//= -?XEbig//; last first. move=> i; have [/= _ /mem_set] : K (f' i) by apply: funS. exact: decomp_measurable. rewrite [leLHS](_ : _ = \sum_(i i _; rewrite ifT ?inE//=; case: ifPn => //. by rewrite notin_set /= -/(g _) => /negP/negPn/eqP ->. rewrite -(esum_pred_image mu g)//. rewrite [leLHS](_ : _ = \esum_(X in range g) mu X); last first. rewrite esum_mkcond [RHS]esum_mkcond; apply: eq_esum. move=> Y _; case: ifPn; rewrite ?(inE, notin_set)/=. by move=> [i giN0 giY]; rewrite ifT// ?inE//=; exists i. move=> Ngx; case: ifPn; rewrite ?(inE, notin_set)//=. move=> [i _ giY]; apply: contra_not_eq Ngx; rewrite -giY => mugi. by exists i => //; apply: contra_neq mugi => ->; rewrite measure0. have -> : range g = \bigcup_i (decomp (seqDU B i)). apply/predeqP => /= Y; split => [[n _ gnY]|[n _ /= YBn]]. have [/= _ f'nB] : K (f' n) by apply: funS. by exists (f' n).1 => //=; rewrite -gnY. by exists (f (n, Y)) => //; rewrite /g /f' funK//= inE. rewrite esum_bigcup//; last first. move=> i j /=. have [->|/set0P DUBiN0] := eqVneq (seqDU B i) set0. rewrite decomp_set0 ?set_fset1 => /negP[]. apply/eqP/predeqP=> x; split=> [[Y/=->]|->]//; first by rewrite measure0. by exists set0. have [->|/set0P DUBjN0] := eqVneq (seqDU B j) set0. rewrite decomp_set0 ?set_fset1 => _ /negP[]. apply/eqP/predeqP=> x; split=> [[Y/=->]|->]//=; first by rewrite measure0. by exists set0. move=> _ _ [Y /= [/[dup] +]]. move=> /mem_set /decomp_sub YBi /mem_set + /mem_set /decomp_sub YBj. move=> /(decomp_neq0 DUBiN0) [y Yy]. apply: (@trivIset_seqDU _ B) => //; exists y. by split => //; [exact: YBi|exact: YBj]. rewrite nneseries_esum// set_true le_esum// => i _. rewrite [leLHS](_ : _ = \sum_(j \in decomp (seqDU B i)) mu j); last first. by rewrite fsbig_esum//; exact: decomp_finite_set. rewrite -SetRing.Rmu_fin_bigcup//=; last 3 first. exact: decomp_finite_set. exact: decomp_triv. by move=> ?; exact: decomp_measurable. rewrite -[leRHS]SetRing.RmuE// le_measure//; last by rewrite cover_decomp. - rewrite inE; apply: fin_bigcup_measurable; first exact: decomp_finite_set. move=> j /mem_set jdec; apply: sub_gen_smallest. exact: decomp_measurable jdec. - by rewrite inE; apply: sub_gen_smallest; exact: Am. Qed. End more_premeasure_ring_lemmas. Section ring_sigma_additive_measure. Context d (R : realType) (T : semiRingOfSetsType d) (mu : {measure set T -> \bar R}). Local Notation Rmu := (SetRing.measure mu). Import SetRing. Let ring_sigma_additive_measure : semi_sigma_additive Rmu. Proof. exact/ring_sigma_additive/measure_sigma_sub_additive. Qed. HB.instance Definition _ := isMeasure0.Build _ _ _ Rmu ring_sigma_additive_measure. End ring_sigma_additive_measure. Lemma measureIl d (R : realFieldType) (T : semiRingOfSetsType d) (mu : {additive_measure set T -> \bar R}) (A B : set T) : measurable A -> measurable B -> (mu (A `&` B) <= mu A)%E. Proof. by move=> mA mB; rewrite le_measure ?inE//; apply: measurableI. Qed. Lemma measureIr d (R : realFieldType) (T : semiRingOfSetsType d) (mu : {additive_measure set T -> \bar R}) (A B : set T) : measurable A -> measurable B -> (mu (A `&` B) <= mu B)%E. Proof. by move=> mA mB; rewrite le_measure ?inE//; apply: measurableI. Qed. Lemma subset_measure0 d (T : semiRingOfSetsType d) (R : realType) (mu : {additive_measure set T -> \bar R}) (A B : set T) : measurable A -> measurable B -> A `<=` B -> mu B = 0%E -> mu A = 0%E. Proof. move=> mA mB AB B0; apply/eqP; rewrite eq_le measure_ge0// ?andbT -?B0. by apply: le_measure; rewrite ?inE. Qed. Section measureD. Variables (d : measure_display) (R : realFieldType) (T : ringOfSetsType d). Variable mu : {measure set T -> \bar R}. Lemma measureDI A B : measurable A -> measurable B -> mu A = mu (A `\` B) + mu (A `&` B). Proof. move=> mA mB; rewrite -measure_semi_additive2. - by rewrite -setDDr setDv setD0. - exact: measurableD. - exact: measurableI. - by apply: measurableU; [exact: measurableD |exact: measurableI]. - by rewrite setDE setIACA setICl setI0. Qed. Lemma measureD A B : measurable A -> measurable B -> mu A < +oo -> mu (A `\` B) = mu A - mu (A `&` B). Proof. move=> mA mB mAoo. rewrite (measureDI mA mB) addeK// fin_numE 1?gt_eqF 1?lt_eqF//. - by rewrite (le_lt_trans _ mAoo)// le_measure // ?inE//; exact: measurableI. - by rewrite (lt_le_trans _ (measure_ge0 _ _)). Qed. End measureD. Lemma measureUfinr d (T : ringOfSetsType d) (R : realFieldType) (A B : set T) (mu : {measure set T -> \bar R}): measurable A -> measurable B -> (mu B < +oo)%E -> mu (A `|` B) = (mu A + mu B - mu (A `&` B))%E. Proof. move=> Am Bm mBfin; rewrite -[B in LHS](setDUK (@subIsetl _ _ A)) setUA. rewrite [A `|` _]setUidl; last exact: subIsetr. rewrite measureU//=; do ?by apply:measurableD; do ?apply: measurableI. rewrite measureD//; do ?exact: measurableI. by rewrite addeA setIA setIid setIC. by rewrite setDE setCI setIUr -!setDE setDv set0U setDIK. Qed. Lemma measureUfinl d (T : ringOfSetsType d) (R : realFieldType) (A B : set T) (mu : {measure set T -> \bar R}): measurable A -> measurable B -> (mu A < +oo)%E -> mu (A `|` B) = (mu A + mu B - mu (A `&` B))%E. Proof. by move=> *; rewrite setUC measureUfinr// setIC [(mu B + _)%E]addeC. Qed. Lemma eq_measureU d (T : ringOfSetsType d) (R : realFieldType) (A B : set T) (mu mu' : {measure set T -> \bar R}): measurable A -> measurable B -> mu A = mu' A -> mu B = mu' B -> mu (A `&` B) = mu' (A `&` B) -> mu (A `|` B) = mu' (A `|` B). Proof. move=> mA mB muA muB muAB; have [mu'ANoo|] := ltP (mu' A) +oo. by rewrite !measureUfinl ?muA ?muB ?muAB. rewrite leye_eq => /eqP mu'A; transitivity (+oo : \bar R); apply/eqP. by rewrite -leye_eq -mu'A -muA le_measure ?inE//=; apply: measurableU. by rewrite eq_sym -leye_eq -mu'A le_measure ?inE//=; apply: measurableU. Qed. Lemma null_set_setU d (R : realFieldType) (T : ringOfSetsType d) (mu : {measure set T -> \bar R}) (A B : set T) : measurable A -> measurable B -> mu A = 0%E -> mu B = 0%E -> mu (A `|` B) = 0%E. Proof. move=> mA mB A0 B0; rewrite measureUfinl ?A0//= ?B0 ?add0e. apply/eqP; rewrite oppe_eq0 -measure_le0/=; do ?exact: measurableI. by rewrite -A0 measureIl. Qed. Lemma cvg_mu_inc d (R : realFieldType) (T : ringOfSetsType d) (mu : {measure set T -> \bar R}) (F : (set T) ^nat) : (forall i, measurable (F i)) -> measurable (\bigcup_n F n) -> nondecreasing_seq F -> mu \o F --> mu (\bigcup_n F n). Proof. move=> mF mbigcupF ndF. have Binter : trivIset setT (seqD F) := trivIset_seqD ndF. have FBE : forall n, F n.+1 = F n `|` seqD F n.+1 := setU_seqD ndF. have FE n : F n = \big[setU/set0]_(i < n.+1) (seqD F) i := eq_bigsetU_seqD n ndF. rewrite eq_bigcup_seqD. have mB i : measurable (seqD F i) by elim: i => * //=; apply: measurableD. apply: cvg_trans (measure_semi_sigma_additive _ mB Binter _); last first. by rewrite -eq_bigcup_seqD. apply: (@cvg_trans _ [filter of (fun n => \sum_(i < n.+1) mu (seqD F i))]). rewrite [X in _ --> X](_ : _ = mu \o F) // funeqE => n. by rewrite -measure_semi_additive // -?FE// => -[|k]. move=> S [n _] nS; exists n => // m nm. under eq_fun do rewrite -(big_mkord predT (mu \o seqD F)). exact/(nS m.+1)/(leq_trans nm). Qed. Section boole_inequality. Variables (d : measure_display) (R : realFieldType) (T : ringOfSetsType d). Variables (mu : {additive_measure set T -> \bar R}). Theorem Boole_inequality (A : (set T) ^nat) n : (forall i, `I_n i -> measurable (A i)) -> mu (\big[setU/set0]_(i < n) A i) <= \sum_(i < n) mu (A i). Proof. move=> Am; rewrite content_sub_additive// -bigcup_mkord. exact: fin_bigcup_measurable. Qed. End boole_inequality. Notation le_mu_bigsetU := Boole_inequality. Section sigma_finite_lemma. Variables (d : measure_display) (R : realFieldType) (T : ringOfSetsType d) (A : set T) (mu : {additive_measure set T -> \bar R}). Lemma sigma_finiteP : sigma_finite A mu -> exists2 F, A = \bigcup_i F i & nondecreasing_seq F /\ forall i, measurable (F i) /\ mu (F i) < +oo. Proof. move=> [S AS moo]; exists (fun n => \big[setU/set0]_(i < n.+1) S i). rewrite AS predeqE => t; split => [[i _ Sit]|[i _]]. by exists i => //; rewrite big_ord_recr /=; right. by rewrite -bigcup_mkord => -[j /= ji Sjt]; exists j. split=> [|i]. - apply/nondecreasing_seqP => i; rewrite [in leRHS]big_ord_recr /=. by apply/subsetPset; left. - split; first by apply: bigsetU_measurable => j _; exact: (moo j).1. rewrite (@le_lt_trans _ _ (\sum_(j < i.+1) mu (S j)))//. by apply: Boole_inequality => j _; exact: (moo j).1. by apply/lte_sum_pinfty => j _; exact: (moo j).2. Qed. End sigma_finite_lemma. Section generalized_boole_inequality. Variables (d : measure_display) (R : realType) (T : ringOfSetsType d). Variable (mu : {measure set T -> \bar R}). Theorem generalized_Boole_inequality (A : (set T) ^nat) : (forall i, measurable (A i)) -> measurable (\bigcup_n A n) -> mu (\bigcup_n A n) <= \sum_(i Am UAm; rewrite measure_sigma_sub_additive. Qed. End generalized_boole_inequality. Notation le_mu_bigcup := generalized_Boole_inequality. Section negligible. Variables (d : measure_display) (R : realFieldType) (T : ringOfSetsType d). Definition negligible (mu : set T -> \bar R) (N : set T) := exists A : set T, [/\ measurable A, mu A = 0 & N `<=` A]. Local Notation "mu .-negligible" := (negligible mu). Lemma negligibleP (mu : {additive_measure set _ -> \bar _}) A : measurable A -> mu.-negligible A <-> mu A = 0. Proof. move=> mA; split => [[B [mB mB0 AB]]|mA0]; last by exists A; split. apply/eqP; rewrite eq_le measure_ge0 // andbT -mB0. by apply: (le_measure mu) => //; rewrite in_setE. Qed. Lemma negligible_set0 (mu : {additive_measure set _ -> \bar _}) : mu.-negligible set0. Proof. exact/negligibleP. Qed. Lemma measure_negligible (mu : {additive_measure set T -> \bar R}) (A : set T) : measurable A -> mu.-negligible A -> mu A = 0%E. Proof. by move=> mA /negligibleP ->. Qed. Definition almost_everywhere (mu : set T -> \bar R) (P : T -> Prop) & (phantom Prop (forall x, P x)) := mu.-negligible (~` [set x | P x]). Local Notation "{ 'ae' m , P }" := (almost_everywhere m (inPhantom P)) : type_scope. Lemma aeW (mu : {measure set _ -> \bar _}) (P : T -> Prop) : (forall x, P x) -> {ae mu, forall x, P x}. Proof. move=> aP; have -> : P = setT by rewrite predeqE => t; split. by apply/negligibleP; [rewrite setCT|rewrite setCT measure0]. Qed. End negligible. Notation "mu .-negligible" := (negligible mu) : type_scope. Notation "{ 'ae' m , P }" := (almost_everywhere m (inPhantom P)) : type_scope. Definition sigma_subadditive (R : numFieldType) (T : Type) (mu : set T -> \bar R) := forall (F : (set T) ^nat), mu (\bigcup_n (F n)) <= \sum_(i \bar R) := { outer_measure0 : mu set0 = 0 ; outer_measure_ge0 : forall x, 0 <= mu x ; le_outer_measure : {homo mu : A B / A `<=` B >-> A <= B} ; outer_measure_sigma_subadditive : sigma_subadditive mu }. #[short(type=outer_measure)] HB.structure Definition OuterMeasure (R : numFieldType) (T : Type) := {mu & isOuterMeasure R T mu}. Notation "{ 'outer_measure' 'set' T '->' '\bar' R }" := (outer_measure R T) (at level 36, T, R at next level, format "{ 'outer_measure' 'set' T '->' '\bar' R }") : ring_scope. #[global] Hint Extern 0 (_ set0 = 0) => solve [apply: outer_measure0] : core. #[global] Hint Extern 0 (sigma_subadditive _) => solve [apply: outer_measure_sigma_subadditive] : core. Arguments outer_measure0 {R T} _. Arguments outer_measure_ge0 {R T} _. Arguments le_outer_measure {R T} _. Arguments outer_measure_sigma_subadditive {R T} _. Lemma le_outer_measureIC (R : realFieldType) T (mu : {outer_measure set T -> \bar R}) (A X : set T) : mu X <= mu (X `&` A) + mu (X `&` ~` A). Proof. pose B : (set T) ^nat := bigcup2 (X `&` A) (X `&` ~` A). have cvg_mu : (fun n => \sum_(i < n) mu (B i)) --> mu (B 0%N) + mu (B 1%N). rewrite -2!cvg_shiftS /=. rewrite [X in X --> _](_ : _ = (fun=> mu (B 0%N) + mu (B 1%N))); last first. rewrite funeqE => i; rewrite 2!big_ord_recl /= big1 ?adde0 // => j _. by rewrite /B /bigcup2 /=. exact: cvg_cst. have := outer_measure_sigma_subadditive mu B. suff : \bigcup_n B n = X. move=> -> /le_trans; apply; under eq_fun do rewrite big_mkord. by rewrite (cvg_lim _ cvg_mu). transitivity (\big[setU/set0]_(i < 2) B i). by rewrite (bigcup_splitn 2) // -bigcup_mkord setUidl// => t -[]. by rewrite 2!big_ord_recl big_ord0 setU0 /= -setIUr setUCr setIT. Unshelve. all: by end_near. Qed. Definition caratheodory_measurable (R : realType) (T : Type) (mu : set T -> \bar R) (A : set T) := forall X, mu X = mu (X `&` A) + mu (X `&` ~` A). Local Notation "mu .-caratheodory" := (caratheodory_measurable mu) : classical_set_scope. Lemma le_caratheodory_measurable (R : realType) T (mu : {outer_measure set T -> \bar R}) (A : set T) : (forall X, mu (X `&` A) + mu (X `&` ~` A) <= mu X) -> mu.-caratheodory A. Proof. move=> suf X; apply/eqP; rewrite eq_le; apply/andP; split; [exact: le_outer_measureIC | exact: suf]. Qed. Section caratheodory_theorem_sigma_algebra. Variables (R : realType) (T : Type) (mu : {outer_measure set T -> \bar R}). Lemma outer_measure_bigcup_lim (A : (set T) ^nat) X : mu (X `&` \bigcup_k A k) <= \sum_(k X `&` A n))). by apply/le_outer_measure; rewrite setI_bigcupr. Qed. Let M := mu.-caratheodory. Lemma caratheodory_measurable_set0 : M set0. Proof. by move=> X /=; rewrite setI0 outer_measure0 add0e setC0 setIT. Qed. Lemma caratheodory_measurable_setC A : M A -> M (~` A). Proof. by move=> MA X; rewrite setCK addeC -MA. Qed. Lemma caratheodory_measurable_setU_le (X A B : set T) : mu.-caratheodory A -> mu.-caratheodory B -> mu (X `&` (A `|` B)) + mu (X `&` ~` (A `|` B)) <= mu X. Proof. move=> mA mB; pose Y := X `&` A `|` X `&` B `&` ~` A. have /(lee_add2r (mu (X `&` ~` (A `|` B)))) : mu Y <= mu (X `&` A) + mu (X `&` B `&` ~` A). pose Z := bigcup2 (X `&` A) (X `&` B `&` ~` A). have -> : Y = \bigcup_k Z k. rewrite predeqE => t; split=> [[?|?]|[]]; [by exists O|by exists 1%N|]. by move=> [_ ?|[_ ?|//]]; [left|right]. rewrite (le_trans (outer_measure_sigma_subadditive mu Z)) //. suff : ((fun n => \sum_(i < n) mu (Z i)) --> mu (X `&` A) + mu (X `&` B `&` ~` A)). move/cvg_lim => /=; under [in leLHS]eq_fun do rewrite big_mkord. by move=> ->. rewrite -(cvg_shiftn 2) /=; set l := (X in _ --> X). rewrite [X in X --> _](_ : _ = cst l); first exact: cvg_cst. rewrite funeqE => i; rewrite addn2 2!big_ord_recl big1 ?adde0 //. by move=> ? _; exact: outer_measure0. have /le_trans : mu (X `&` (A `|` B)) + mu (X `&` ~` (A `|` B)) <= mu Y + mu (X `&` ~` (A `|` B)). rewrite setIUr (_ : X `&` A `|` X `&` B = Y) //. rewrite /Y -[in LHS](setIT B) -(setUCr A) 2!setIUr setUC -[in RHS]setIA. rewrite setUC setUA; congr (_ `|` _). by rewrite setUidPl setICA; apply subIset; right. suff -> : mu (X `&` A) + mu (X `&` B `&` ~` A) + mu (X `&` (~` (A `|` B))) = mu X by exact. by rewrite setCU setIA -(setIA X) setICA (setIC B) -addeA -mB -mA. Qed. Lemma caratheodory_measurable_setU A B : M A -> M B -> M (A `|` B). Proof. move=> mA mB X; apply/eqP; rewrite eq_le. by rewrite le_outer_measureIC andTb caratheodory_measurable_setU_le. Qed. Lemma caratheodory_measurable_bigsetU (A : (set T) ^nat) : (forall n, M (A n)) -> forall n, M (\big[setU/set0]_(i < n) A i). Proof. move=> MA; elim=> [|n ih]; first by rewrite big_ord0; exact: caratheodory_measurable_set0. by rewrite big_ord_recr; apply caratheodory_measurable_setU. Qed. Lemma caratheodory_measurable_setI A B : M A -> M B -> M (A `&` B). Proof. move=> mA mB; rewrite -(setCK A) -(setCK B) -setCU. by apply/caratheodory_measurable_setC/caratheodory_measurable_setU; exact/caratheodory_measurable_setC. Qed. Lemma caratheodory_measurable_setD A B : M A -> M B -> M (A `\` B). Proof. move=> mA mB; rewrite setDE; apply caratheodory_measurable_setI => //. exact: caratheodory_measurable_setC. Qed. Section additive_ext_lemmas. Variable A B : set T. Hypothesis (mA : M A) (mB : M B). Let caratheodory_decomp X : mu X = mu (X `&` A `&` B) + mu (X `&` A `&` ~` B) + mu (X `&` ~` A `&` B) + mu (X `&` ~` A `&` ~` B). Proof. by rewrite mA mB [X in _ + _ + X = _]mB addeA. Qed. Let caratheorody_decompIU X : mu (X `&` (A `|` B)) = mu (X `&` A `&` B) + mu (X `&` ~` A `&` B) + mu (X `&` A `&` ~` B). Proof. rewrite caratheodory_decomp -!addeA; congr (mu _ + _). rewrite -!setIA; congr (_ `&` _). by rewrite setIC; apply/setIidPl; apply subIset; left; left. rewrite addeA addeC [X in mu X + _](_ : _ = set0); last first. by rewrite -setIA -setCU -setIA setICr setI0. rewrite outer_measure0 add0e addeC -!setIA; congr (mu (X `&` _) + mu (X `&` _)). by rewrite setIC; apply/setIidPl; apply subIset; right; right. by rewrite setIC; apply/setIidPl; apply subIset; left; left. Qed. Lemma disjoint_caratheodoryIU X : [disjoint A & B] -> mu (X `&` (A `|` B)) = mu (X `&` A) + mu (X `&` B). Proof. move=> /eqP AB; rewrite caratheodory_decomp -setIA AB setI0 outer_measure0. rewrite add0e addeC -setIA -setCU -setIA setICr setI0 outer_measure0 add0e. rewrite -!setIA; congr (mu (X `&` _ ) + mu (X `&` _)). rewrite (setIC A) setIA setIC; apply/setIidPl. - by rewrite setIUl setICr setU0 subsetI; move/disjoints_subset in AB; split. - rewrite setIA setIC; apply/setIidPl; rewrite setIUl setICr set0U. by move: AB; rewrite setIC => /disjoints_subset => AB; rewrite subsetI; split. Qed. End additive_ext_lemmas. Lemma caratheodory_additive (A : (set T) ^nat) : (forall n, M (A n)) -> trivIset setT A -> forall n X, mu (X `&` \big[setU/set0]_(i < n) A i) = \sum_(i < n) mu (X `&` A i). Proof. move=> MA ta; elim=> [|n ih] X; first by rewrite !big_ord0 setI0 outer_measure0. rewrite big_ord_recr /= disjoint_caratheodoryIU // ?ih ?big_ord_recr //. - exact: caratheodory_measurable_bigsetU. - by apply/eqP/(@trivIset_bigsetUI _ predT) => //; rewrite /predT /= trueE. Qed. Lemma caratheodory_lim_lee (A : (set T) ^nat) : (forall n, M (A n)) -> trivIset setT A -> forall X, \sum_(k MA tA X. set A' := \bigcup_k A k; set B := fun n => \big[setU/set0]_(k < n) (A k). suff : forall n, \sum_(k < n) mu (X `&` A k) + mu (X `&` ~` A') <= mu X. move=> XA; rewrite (_ : lim _ = ereal_sup ((fun n => \sum_(k < n) mu (X `&` A k)) @` setT)); last first. under eq_fun do rewrite big_mkord. apply/cvg_lim => //; apply/ereal_nondecreasing_cvg. apply: (lee_sum_nneg_ord (fun n => mu (X `&` A n)) xpredT) => n _. exact: outer_measure_ge0. move XAx : (mu (X `&` ~` A')) => [x| |]. - rewrite -lee_subr_addr //; apply ub_ereal_sup => /= _ [n _] <-. by rewrite EFinN lee_subr_addr // -XAx XA. - suff : mu X = +oo by move=> ->; rewrite leey. by apply/eqP; rewrite -leye_eq -XAx le_outer_measure. - by rewrite addeC /= leNye. move=> n. apply (@le_trans _ _ (\sum_(k < n) mu (X `&` A k) + mu (X `&` ~` B n))). apply/lee_add2l/le_outer_measure; apply: setIS; apply: subsetC => t. by rewrite /B -bigcup_mkord => -[i ? ?]; exists i. rewrite [in leRHS](caratheodory_measurable_bigsetU MA n) lee_add2r //. by rewrite caratheodory_additive. Qed. Lemma caratheodory_measurable_trivIset_bigcup (A : (set T) ^nat) : (forall n, M (A n)) -> trivIset setT A -> M (\bigcup_k (A k)). Proof. move=> MA tA; apply le_caratheodory_measurable => X /=. have /(lee_add2r (mu (X `&` ~` \bigcup_k A k))) := outer_measure_bigcup_lim A X. by move/le_trans; apply; exact: caratheodory_lim_lee. Qed. Lemma caratheodory_measurable_bigcup (A : (set T) ^nat) : (forall n, M (A n)) -> M (\bigcup_k (A k)). Proof. move=> MA; rewrite -eq_bigcup_seqD_bigsetU. apply/caratheodory_measurable_trivIset_bigcup; last first. apply: (@trivIset_seqD _ (fun n => \big[setU/set0]_(i < n.+1) A i)). by move=> n m nm; exact/subsetPset/subset_bigsetU. by case=> [|n /=]; [| apply/caratheodory_measurable_setD => //]; exact/caratheodory_measurable_bigsetU. Qed. End caratheodory_theorem_sigma_algebra. Definition caratheodory_type (R : realType) (T : Type) (mu : set T -> \bar R) := T. Definition caratheodory_display R T : (set T -> \bar R) -> measure_display. Proof. exact. Qed. Section caratheodory_sigma_algebra. Variables (R : realType) (T : pointedType) (mu : {outer_measure set T -> \bar R}). HB.instance Definition _ := @isMeasurable.Build (caratheodory_display mu) (caratheodory_type mu) (Pointed.class T) mu.-caratheodory (caratheodory_measurable_set0 mu) (@caratheodory_measurable_setC _ _ mu) (@caratheodory_measurable_bigcup _ _ mu). End caratheodory_sigma_algebra. Notation "mu .-cara" := (caratheodory_display mu) : measure_display_scope. Notation "mu .-cara.-measurable" := (measurable : set (set (caratheodory_type mu))) : classical_set_scope. Definition measure_is_complete d (R : realType) (T : measurableType d) (mu : set T -> \bar R) := forall X, mu.-negligible X -> measurable X. Section caratheodory_measure. Variables (R : realType) (T : pointedType). Variable (mu : {outer_measure set T -> \bar R}). Let U := caratheodory_type mu. Lemma caratheodory_measure0 : mu (set0 : set U) = 0. Proof. exact: outer_measure0. Qed. Lemma caratheodory_measure_ge0 (A : set U) : 0 <= mu A. Proof. exact: outer_measure_ge0. Qed. Lemma caratheodory_measure_sigma_additive : semi_sigma_additive (mu : set U -> _). Proof. move=> A mA tA mbigcupA; set B := \bigcup_k A k. suff : forall X, mu X = \sum_(k _) = fun n => \sum_(k < n) mu (A k)); last first. rewrite funeqE => n; rewrite big_mkord; apply eq_bigr => i _; congr (mu _). by rewrite setIC; apply/setIidPl => t Ait; exists i. move=> ->; have := fun n (_ : xpredT n) => outer_measure_ge0 mu (A n). move/is_cvg_nneseries => /cvg_ex[l] hl. under [in X in _ --> X]eq_fun do rewrite -(big_mkord xpredT (mu \o A)). by move/(@cvg_lim _ (@ereal_hausdorff R)) : (hl) => ->. move=> X. have mB : mu.-cara.-measurable B := caratheodory_measurable_bigcup mA. apply/eqP; rewrite eq_le (caratheodory_lim_lee mA tA X) andbT. have /(lee_add2r (mu (X `&` ~` B))) := outer_measure_bigcup_lim mu A X. by rewrite -le_caratheodory_measurable // => ?; rewrite -mB. Qed. HB.instance Definition _ := isMeasure.Build _ _ _ (mu : set (caratheodory_type mu) -> _) caratheodory_measure0 caratheodory_measure_ge0 caratheodory_measure_sigma_additive. Lemma measure_is_complete_caratheodory : measure_is_complete (mu : set (caratheodory_type mu) -> _). Proof. move=> B [A [mA muA0 BA]]; apply le_caratheodory_measurable => X. suff -> : mu (X `&` B) = 0. by rewrite add0e le_outer_measure //; apply subIset; left. have muB0 : mu B = 0. apply/eqP; rewrite eq_le outer_measure_ge0 andbT. by apply: (le_trans (le_outer_measure mu _ _ BA)); rewrite -muA0. apply/eqP; rewrite eq_le outer_measure_ge0 andbT. have : X `&` B `<=` B by apply subIset; right. by move/(le_outer_measure mu); rewrite muB0 => ->. Qed. End caratheodory_measure. Lemma epsilon_trick (R : realType) (A : (\bar R)^nat) e (P : pred nat) : (forall n, 0 <= A n) -> (0 <= e)%R -> \sum_(i A0 /nonnegP[{}e]. rewrite (@le_trans _ _ (lim (fun n => (\sum_(0 <= i < n | P i) A i) + \sum_(0 <= i < n) (e%:num / (2 ^ i.+1)%:R)%:E))) //. rewrite nneseriesD // ereal_limD //. - rewrite lee_add2l //; apply: lee_lim => //. + exact: is_cvg_nneseries. + exact: is_cvg_nneseries. + by near=> n; exact: lee_sum_nneg_subset. - exact: is_cvg_nneseries. - exact: is_cvg_nneseries. - exact: adde_def_nneseries. suff cvggeo : (fun n => \sum_(0 <= i < n) (e%:num / (2 ^ i.+1)%:R)%:E) --> e%:num%:E. rewrite ereal_limD //. - by rewrite lee_add2l // (cvg_lim _ cvggeo). - exact: is_cvg_nneseries. - by apply: is_cvg_nneseries => ?; rewrite lee_fin divr_ge0. - by rewrite (cvg_lim _ cvggeo) //= fin_num_adde_def. rewrite (_ : (fun n => _) = EFin \o (fun n => \sum_(0 <= i < n) (e%:num / (2 ^ (i + 1))%:R))%R); last first. rewrite funeqE => n /=; rewrite (@big_morph _ _ EFin 0 adde)//. by under [in RHS]eq_bigr do rewrite addn1. apply: cvg_comp; last apply cvg_refl. have := cvg_geometric_series_half e%:num O. by rewrite expr0 divr1; apply: cvg_trans. Unshelve. all: by end_near. Qed. Section measurable_cover. Variable (d : measure_display) (T : semiRingOfSetsType d). Implicit Types (X : set T) (F : (set T)^nat). Definition measurable_cover X := [set F : (set T)^nat | (forall i, measurable (F i)) /\ X `<=` \bigcup_k (F k)]. Lemma cover_measurable X F : measurable_cover X F -> forall k, measurable (F k). Proof. by move=> + k; rewrite /measurable_cover => -[] /(_ k). Qed. Lemma cover_subset X F : measurable_cover X F -> X `<=` \bigcup_k (F k). Proof. by case. Qed. End measurable_cover. Section measure_extension. Variables (R : realType) (d : measure_display) (T : semiRingOfSetsType d). Variable mu : set T -> \bar R. Hypothesis measure0 : mu set0 = 0. Hypothesis measure_ge0 : forall X, mu X >= 0. Hint Resolve measure_ge0 measure0 : core. Definition mu_ext (X : set T) : \bar R := ereal_inf [set \sum_(i -> A <= B}. Proof. move=> A B AB; apply/le_ereal_inf => x [B' [mB' BB']]. by move=> <-{x}; exists B' => //; split => //; apply: subset_trans AB BB'. Qed. Lemma mu_ext_ge0 A : 0 <= mu^* A. Proof. apply: lb_ereal_inf => x [B [mB AB] <-{x}]; rewrite ereal_lim_ge //=. exact: is_cvg_nneseries. by near=> n; rewrite sume_ge0. Unshelve. all: by end_near. Qed. Lemma mu_ext0 : mu^* set0 = 0. Proof. apply/eqP; rewrite eq_le; apply/andP; split; last exact/mu_ext_ge0. rewrite /mu_ext; apply ereal_inf_lb; exists (fun _ => set0); first by split. by apply: (@lim_near_cst _ _ _ _ _ 0) => //; near=> n => /=; rewrite big1. Unshelve. all: by end_near. Qed. Lemma measurable_uncurry (G : ((set T)^nat)^nat) (x : nat * nat) : measurable (G x.1 x.2) -> measurable (uncurry G x). Proof. by case: x. Qed. Lemma mu_ext_sigma_subadditive : sigma_subadditive mu^*. Proof. move=> A; have [[i ioo]|] := pselect (exists i, mu^* (A i) = +oo). rewrite (nneseries_pinfty _ _ ioo)// ?leey// => n _. exact: mu_ext_ge0. rewrite -forallNE => Aoo. suff add2e : forall e : {posnum R}, mu^* (\bigcup_n A n) <= \sum_(i e. move=> e; rewrite (le_trans _ (epsilon_trick _ _ _))//; last first. by move=> n; apply: mu_ext_ge0. pose P n (B : (set T)^nat) := measurable_cover (A n) B /\ \sum_(k n; rewrite /P /mu_ext. set S := (X in ereal_inf X); move infS : (ereal_inf S) => iS. case: iS infS => [r Sr|Soo|Soo]. - have en1 : (0 < e%:num / (2 ^ n.+1)%:R)%R. by rewrite divr_gt0 // ltr0n expn_gt0. have /(lb_ereal_inf_adherent en1) : ereal_inf S \is a fin_num by rewrite Sr. move=> [x [B [mB AnB muBx] xS]]. exists B; split => //; rewrite muBx -Sr; apply/ltW. by rewrite (lt_le_trans xS) // lee_add2l //= lee_fin ler_pmul. - by have := Aoo n; rewrite /mu^* Soo. - suff : lbound S 0 by move/lb_ereal_inf; rewrite Soo. by move=> /= _ [B [mB AnB] <-]; exact: nneseries_lim_ge0. have muG_ge0 x : 0 <= (mu \o uncurry G) x by exact/measure_ge0. apply (@le_trans _ _ (\esum_(i in setT) (mu \o uncurry G) i)). rewrite /mu_ext; apply: ereal_inf_lb => /=. have /card_esym/ppcard_eqP[f] := card_nat2. exists (uncurry G \o f). split => [i|]; first exact/measurable_uncurry/(PG (f i).1).1.1. apply: (@subset_trans _ (\bigcup_n \bigcup_k G n k)) => [t [i _]|]. by move=> /(cover_subset (PG i).1) -[j _ ?]; exists i => //; exists j. move=> t [i _ [j _ Bijt]]; exists (f^-1%FUN (i, j)) => //=. by rewrite invK ?inE. rewrite -(esum_pred_image (mu \o uncurry G) _ xpredT) ?[fun=> _]set_true//. congr esum. by rewrite -[RHS](image_eq f)predeqE=> -[a b]/=; split=> -[n _ <-]; exists n. rewrite (_ : esum _ _ = \sum_(i set (nat * nat) := fun i => [set (i, j) | j in setT]. rewrite (_ : setT = \bigcup_k J k); last first. by rewrite predeqE => -[a b]; split => // _; exists a => //; exists b. rewrite esum_bigcupT /=; last 2 first. - apply/trivIsetP => i j _ _ ij. rewrite predeqE => -[n m] /=; split => //= -[] [_] _ [<-{n} _]. by move=> [m' _] [] /esym/eqP; rewrite (negbTE ij). - by move=> /= [n m]; apply/measure_ge0; exact: (cover_measurable (PG n).1). rewrite (_ : setT = id @` xpredT); last first. by rewrite image_id funeqE => x; rewrite trueE. rewrite esum_pred_image //; last by move=> n _; exact: esum_ge0. apply: eq_nneseries => /= j _. rewrite -(esum_pred_image (mu \o uncurry G) (pair j) predT)//=; last first. by move=> ? ? _ _; exact: (@can_inj _ _ _ snd). by congr esum; rewrite predeqE => -[a b]; split; move=> [i _ <-]; exists i. apply lee_lim. - apply: is_cvg_nneseries => n _. by apply: nneseries_lim_ge0 => m _; exact: (muG_ge0 (n, m)). - by apply: is_cvg_nneseries => n _; apply: adde_ge0 => //; exact: mu_ext_ge0. - by near=> n; apply: lee_sum => i _; exact: (PG i).2. Unshelve. all: by end_near. Qed. End measure_extension. Declare Scope measure_scope. Delimit Scope measure_scope with mu. Notation "mu ^*" := (mu_ext mu) : measure_scope. Local Open Scope measure_scope. Section measure_extension. Variables (d : measure_display) (R : realType) (T : semiRingOfSetsType d). Variable mu : {additive_measure set T -> \bar R}. HB.instance Definition _ := isOuterMeasure.Build R T _ (@mu_ext0 _ _ _ _ (measure0 mu) (measure_ge0 mu)) (mu_ext_ge0 (measure_ge0 mu)) (le_mu_ext mu) (mu_ext_sigma_subadditive (measure_ge0 mu)). End measure_extension. Section g_salgebra_measure_unique_trace. Variables (d : measure_display) (R : realType) (T : measurableType d). Variables (G : set (set T)) (D : set T) (mD : measurable D). Let H := [set X | G X /\ X `<=` D] (* "trace" of G wrt D *). Hypotheses (Hm : H `<=` measurable) (setIH : setI_closed H) (HD : H D). Variables m1 m2 : {measure set T -> \bar R}. Hypotheses (m1m2 : forall A, H A -> m1 A = m2 A) (m1oo : (m1 D < +oo)%E). Lemma g_salgebra_measure_unique_trace : (forall X, (<>) X -> X `<=` D) -> forall X, <> X -> m1 X = m2 X. Proof. move=> sDHD; set E := [set A | [/\ measurable A, m1 A = m2 A & A `<=` D] ]. have HE : H `<=` E. by move=> X HX; rewrite /E /=; split; [exact: Hm|exact: m1m2|case: HX]. have setDE : setD_closed E. move=> A B BA [mA m1m2A AD] [mB m1m2B BD]; split; first exact: measurableD. - rewrite measureD//; last first. by rewrite (le_lt_trans _ m1oo)//; apply: le_measure => // /[!inE]. rewrite setIidr// m1m2A m1m2B measureD// ?setIidr//. by rewrite (le_lt_trans _ m1oo)// -m1m2A; apply: le_measure => // /[!inE]. - by rewrite setDE; apply: subIset; left. have ndE : ndseq_closed E. move=> A ndA EA; split; have mA n : measurable (A n) by have [] := EA n. - exact: bigcupT_measurable. - transitivity (lim (m1 \o A)). by apply/esym/cvg_lim=>//; exact/(cvg_mu_inc mA _ ndA)/bigcupT_measurable. transitivity (lim (m2 \o A)). by congr (lim _); rewrite funeqE => n; have [] := EA n. by apply/cvg_lim => //; exact/(cvg_mu_inc mA _ ndA)/bigcupT_measurable. - by apply: bigcup_sub => n; have [] := EA n. have sDHE : <> `<=` E. by apply: monotone_class_subset => //; split => //; [move=> A []|exact/HE]. by move=> X /sDHE[mX ?] _. Qed. End g_salgebra_measure_unique_trace. Section g_salgebra_measure_unique. Variables (d : measure_display) (R : realType) (T : measurableType d). Variable (G : set (set T)). Hypothesis (Gm : G `<=` measurable). Variable g : (set T)^nat. Hypotheses (Gg : forall i, G (g i)). Hypothesis g_cover : \bigcup_k (g k) = setT. Variables m1 m2 : {measure set T -> \bar R}. Lemma g_salgebra_measure_unique_cover : (forall n A, <> A -> m1 (g n `&` A) = m2 (g n `&` A)) -> forall A, <> A -> m1 A = m2 A. Proof. pose GT := [the ringOfSetsType _ of salgebraType G]. move=> sGm1m2; pose g' k := \bigcup_(i in `I_k) g i. have sGm := smallest_sub (@sigma_algebra_measurable _ T) Gm. have Gg' i : <> (g' i). apply: (@fin_bigcup_measurable _ GT) => //. by move=> n _; apply: sub_sigma_algebra. have sG'm1m2 n A : <> A -> m1 (g' n `&` A) = m2 (g' n `&` A). move=> sGA; rewrite setI_bigcupl bigcup_mkord. elim: n => [|n IHn] in A sGA *; rewrite (big_ord0, big_ord_recr) ?measure0//=. have sGgA i : <> (g i `&` A). apply: (@measurableI _ GT) => //. exact: sub_sigma_algebra. apply: eq_measureU; rewrite ?sGm1m2 ?IHn//; last first. - by rewrite -big_distrl -setIA big_distrl/= IHn// setICA setIid//. - exact/sGm. - by apply: bigsetU_measurable => i _; apply/sGm. have g'_cover : \bigcup_k (g' k) = setT. by rewrite -subTset -g_cover => x [k _ gx]; exists k.+1 => //; exists k => /=. have nd_g' : nondecreasing_seq g'. move=> m n lemn; rewrite subsetEset => x [k km gx]; exists k => //=. exact: leq_trans lemn. move=> A gA. have -> : A = \bigcup_n (g' n `&` A) by rewrite -setI_bigcupl g'_cover setTI. transitivity (lim (fun n => m1 (g' n `&` A))). apply/esym/cvg_lim => //; apply: cvg_mu_inc => //. - by move=> n; apply: measurableI; exact/sGm. - by apply: bigcupT_measurable => k; apply: measurableI; exact/sGm. - by move=> ? ? ?; apply/subsetPset; apply: setSI; exact/subsetPset/nd_g'. transitivity (lim (fun n => m2 (g' n `&` A))). by congr (lim _); rewrite funeqE => x; apply: sG'm1m2 => //; exact/sGm. apply/cvg_lim => //; apply: cvg_mu_inc => //. - by move=> k; apply: measurableI => //; exact/sGm. - by apply: bigcupT_measurable => k; apply: measurableI; exact/sGm. - by move=> a b ab; apply/subsetPset; apply: setSI; exact/subsetPset/nd_g'. Qed. Hypothesis setIG : setI_closed G. Hypothesis m1m2 : forall A, G A -> m1 A = m2 A. Hypothesis m1goo : forall k, (m1 (g k) < +oo)%E. Lemma g_salgebra_measure_unique : forall E, <> E -> m1 E = m2 E. Proof. pose G_ n := [set X | G X /\ X `<=` g n]. (* "trace" *) have G_E n : G_ n = [set g n `&` C | C in G]. rewrite eqEsubset; split. by move=> X [GX Xgn] /=; exists X => //; rewrite setIidr. by rewrite /G_ => X [Y GY <-{X}]; split; [exact: setIG|apply: subIset; left]. have gIsGE n : [set g n `&` A | A in <>] = <>. rewrite sigma_algebra_preimage_classE eqEsubset; split. by move=> _ /= [Y sGY <-]; exists Y => //; rewrite preimage_id setIC. by move=> _ [Y mY <-] /=; exists Y => //; rewrite preimage_id setIC. have preimg_gGE n : preimage_class (g n) id G = G_ n. rewrite eqEsubset; split => [_ [Y GY <-]|]. by rewrite preimage_id G_E /=; exists Y => //; rewrite setIC. by move=> X [GX Xgn]; exists X => //; rewrite preimage_id setIidr. apply: g_salgebra_measure_unique_cover => //. move=> n A sGA; apply: (@g_salgebra_measure_unique_trace _ _ _ G (g n)) => //. - exact: Gm. - by move=> ? [? _]; exact/Gm. - by move=> ? ? [? ?] [? ?]; split; [exact: setIG|apply: subIset; tauto]. - by split. - by move=> ? [? ?]; exact: m1m2. - move=> X; rewrite -/(G_ n) -preimg_gGE -gIsGE. by case=> B sGB <-{X}; apply: subIset; left. - by rewrite -/(G_ n) -preimg_gGE -gIsGE; exists A. Qed. End g_salgebra_measure_unique. Section measure_unique. Variables (d : measure_display) (R : realType) (T : measurableType d). Variables (G : set (set T)) (g : (set T)^nat). Hypotheses (mG : measurable = <>) (setIG : setI_closed G). Hypothesis Gg : forall i, G (g i). Hypothesis g_cover : \bigcup_k (g k) = setT. Variables m1 m2 : {measure set T -> \bar R}. Hypothesis m1m2 : forall A, G A -> m1 A = m2 A. Hypothesis m1goo : forall k, (m1 (g k) < +oo)%E. Lemma measure_unique A : measurable A -> m1 A = m2 A. Proof. move=> mA; apply: (@g_salgebra_measure_unique _ _ _ G); rewrite -?mG//. by rewrite mG; exact: sub_sigma_algebra. Qed. End measure_unique. Arguments measure_unique {d R T} G g. Lemma measurable_mu_extE d (R : realType) (T : semiRingOfSetsType d) (mu : {additive_measure set T -> \bar R}) X : sigma_sub_additive mu -> measurable X -> mu^* X = mu X. Proof. move=> muS mX; apply/eqP; rewrite eq_le; apply/andP; split. apply ereal_inf_lb; exists (fun n => if n is 0%N then X else set0). by split=> [[]// _|t Xt]; exists 0%N. apply/cvg_lim => //; rewrite -cvg_shiftS. rewrite (_ : [sequence _]_n = cst (mu X)); first exact: cvg_cst. by rewrite funeqE => n /=; rewrite big_nat_recl//= big1 ?adde0. apply/lb_ereal_inf => x [A [mA XA] <-{x}]. have XUA : X = \bigcup_n (X `&` A n). rewrite predeqE => t; split => [Xt|[i _ []//]]. by have [i _ Ait] := XA _ Xt; exists i; split. apply: (@le_trans _ _ (\sum_(i // i; apply: measurableI. apply lee_lim; [exact: is_cvg_nneseries|exact: is_cvg_nneseries|]. apply: nearW => n; apply: lee_sum => i _; apply: le_measure => // /[!inE]//=. exact: measurableI. Qed. Section Rmu_ext. Import SetRing. Lemma Rmu_ext d (R : realType) (T : semiRingOfSetsType d) (mu : {additive_measure set T -> \bar R}) : (measure mu)^* = mu^*. Proof. apply/funeqP => /= X; rewrite /mu_ext/=; apply/eqP; rewrite eq_le. rewrite ?lb_ereal_inf// => _ [F [Fm XS] <-]; rewrite ereal_inf_lb//; last first. exists F; first by split=> // i; apply: sub_gen_smallest. by rewrite (eq_nneseries (fun _ _ => RmuE _ (Fm _))). pose K := [set: nat] `*`` fun i => decomp (F i). have /ppcard_eqP[f] : (K #= [set: nat])%card. apply: cardMR_eq_nat => // i; split; last by apply/set0P; rewrite decompN0. by apply: finite_set_countable => //; exact: decomp_finite_set. pose g i := (f^-1%FUN i).2; exists g; first split. - move=> k; have [/= _ /mem_set] : K (f^-1%FUN k) by apply: funS. exact: decomp_measurable. - move=> i /XS [k _]; rewrite -[F k]cover_decomp => -[D /= DFk Di]. by exists (f (k, D)) => //; rewrite /g invK// inE. rewrite !nneseries_esum//= /measure ?set_true. transitivity (\esum_(i in setT) \sum_(X0 \in decomp (F i)) mu X0); last first. by apply eq_esum => /= k _; rewrite fsbig_finite//; exact: decomp_finite_set. rewrite (eq_esum (fun _ _ => fsbig_esum _ _))//; last first. by move=> ? _; exact: decomp_finite_set. rewrite esum_esum//= (reindex_esum K setT f) => //=. by apply: eq_esum => i Ki; rewrite /g funK ?inE. Qed. End Rmu_ext. Lemma measurable_Rmu_extE d (R : realType) (T : semiRingOfSetsType d) (mu : {additive_measure set T -> \bar R}) X : sigma_sub_additive mu -> d.-ring.-measurable X -> mu^* X = SetRing.measure mu X. Proof. move=> mu_sub Xm/=; rewrite -Rmu_ext/= measurable_mu_extE//. exact: ring_sigma_sub_additive. Qed. Section Hahn_extension. Variables (d : measure_display) (R : realType) (T : semiRingOfSetsType d). Variable mu : {additive_measure set T -> \bar R}. Hypothesis mu_sub : sigma_sub_additive mu. Let Rmu := SetRing.measure mu. Notation rT := (SetRing.type T). Lemma sub_caratheodory : (d.-measurable).-sigma.-measurable `<=` mu^*.-cara.-measurable. Proof. suff: <> `<=` mu^*.-cara.-measurable. apply: subset_trans; apply: sub_smallest2r => //. by apply: sub_smallest. apply: smallest_sub. split => //; [by move=> X mX; rewrite setTD; exact: measurableC | by move=> u_ mu_; exact: bigcupT_measurable]. move=> A mA; apply le_caratheodory_measurable => // X. apply lb_ereal_inf => _ [B [mB XB] <-]. rewrite -(eq_nneseries (fun _ _ => SetRing.RmuE _ (mB _)))=> //. have RmB i : measurable (B i : set rT) by exact: sub_gen_smallest. set BA := eseries (fun n => Rmu (B n `&` A)). set BNA := eseries (fun n => Rmu (B n `&` ~` A)). apply (@le_trans _ _ (lim BA + lim BNA)); [apply: lee_add|]. - rewrite (_ : BA = eseries (fun n => mu_ext mu (B n `&` A))); last first. rewrite funeqE => n; apply: eq_bigr => k _. by rewrite /= measurable_Rmu_extE //; exact: measurableI. apply (@le_trans _ _ (mu_ext mu (\bigcup_k (B k `&` A)))). by apply le_mu_ext; rewrite -setI_bigcupl; exact: setISS. exact: outer_measure_sigma_subadditive. - rewrite (_ : BNA = eseries (fun n => mu_ext mu (B n `\` A))); last first. rewrite funeqE => n; apply eq_bigr => k _. rewrite /= measurable_Rmu_extE //; exact: measurableD. apply (@le_trans _ _ (mu_ext mu (\bigcup_k (B k `\` A)))). by apply le_mu_ext; rewrite -setI_bigcupl; exact: setISS. exact: outer_measure_sigma_subadditive. have ? : cvg BNA. apply/is_cvg_nneseries => n _. by rewrite -setDE; apply: measure_ge0 => //; exact: measurableD. have ? : cvg BA. by apply/is_cvg_nneseries => n _; apply: measure_ge0 =>//; apply: measurableI. have ? : cvg (eseries (Rmu \o B)) by exact/is_cvg_nneseries. have [def|] := boolP (adde_def (lim BA) (lim BNA)); last first. rewrite /adde_def negb_and !negbK=> /orP[/andP[BAoo BNAoo]|/andP[BAoo BNAoo]]. - suff -> : lim (eseries (Rmu \o B)) = +oo by rewrite leey. apply/eqP; rewrite -leye_eq -(eqP BAoo); apply/lee_lim => //. near=> n; apply: lee_sum => m _; apply: le_measure; rewrite /mkset; by [rewrite inE; exact: measurableI | rewrite inE | apply: subIset; left]. - suff -> : lim (eseries (Rmu \o B)) = +oo by rewrite leey. apply/eqP; rewrite -leye_eq -(eqP BNAoo); apply/lee_lim => //. by near=> n; apply: lee_sum => m _; rewrite -setDE; apply: le_measure; rewrite /mkset ?inE//; apply: measurableD. rewrite -ereal_limD // (_ : (fun _ => _) = eseries (fun k => Rmu (B k `&` A) + Rmu (B k `&` ~` A))); last first. by rewrite funeqE => n; rewrite -big_split /=; apply eq_bigr. apply/lee_lim => //. apply/is_cvg_nneseries => // n _; apply/adde_ge0. by apply: measure_ge0 => //; exact: measurableI. by rewrite -setDE; apply: measure_ge0; exact: measurableD. near=> n; apply: lee_sum => i _; rewrite -measure_semi_additive2. - apply: le_measure; rewrite /mkset ?inE//; [|by rewrite -setIUr setUCr setIT]. by apply: measurableU; [exact:measurableI|rewrite -setDE; exact:measurableD]. - exact: measurableI. - by rewrite -setDE; exact: measurableD. - by apply: measurableU; [exact:measurableI|rewrite -setDE; exact:measurableD]. - by rewrite setIACA setICr setI0. Unshelve. all: by end_near. Qed. Let I := [the measurableType _ of salgebraType (@measurable _ T)]. Definition Hahn_ext : set I -> \bar R := mu^*. Local Lemma Hahn_ext0 : Hahn_ext set0 = 0. Proof. exact: mu_ext0. Qed. Local Lemma Hahn_ext_ge0 (A : set I) : 0 <= Hahn_ext A. Proof. exact: mu_ext_ge0. Qed. Local Lemma Hahn_ext_sigma_additive : semi_sigma_additive Hahn_ext. Proof. move=> F mF tF mUF; rewrite /Hahn_ext. apply: caratheodory_measure_sigma_additive => //; last first. exact: sub_caratheodory. by move=> i; exact: (sub_caratheodory (mF i)). Qed. HB.instance Definition _ := isMeasure.Build _ _ _ Hahn_ext Hahn_ext0 Hahn_ext_ge0 Hahn_ext_sigma_additive. Lemma Hahn_ext_sigma_finite : @sigma_finite _ _ T setT mu -> @sigma_finite _ _ _ setT Hahn_ext. Proof. move=> -[S setTS mS]; exists S => //; move=> i; split. by have := (mS i).1; exact: sub_sigma_algebra. by rewrite /Hahn_ext /= measurable_mu_extE //; [exact: (mS i).2 | exact: (mS i).1]. Qed. Lemma Hahn_ext_unique : @sigma_finite _ _ T setT mu -> (forall mu' : {measure set I -> \bar R}, (forall X, d.-measurable X -> mu X = mu' X) -> (forall X, (d.-measurable).-sigma.-measurable X -> Hahn_ext X = mu' X)). Proof. move=> [F TF /all_and2[Fm muF]] mu' mu'mu X mX. apply: (@measure_unique _ _ [the measurableType _ of I] d.-measurable F) => //. - by move=> A B Am Bm; apply: measurableI. - by move=> A Am; rewrite /= /Hahn_ext measurable_mu_extE// mu'mu. - by move=> k; rewrite /= /Hahn_ext measurable_mu_extE. Qed. End Hahn_extension. Lemma caratheodory_measurable_mu_ext d (R : realType) (T : measurableType d) (mu : {measure set T -> \bar R}) A : d.-measurable A -> mu^*.-cara.-measurable A. Proof. by move=> Am; apply: sub_caratheodory => //; [exact: measure_sigma_sub_additive|exact: sub_sigma_algebra]. Qed. Definition preimage_classes d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (T : Type) (f1 : T -> T1) (f2 : T -> T2) := <>. Section product_lemma. Variables (d1 d2 : measure_display) (T1 : measurableType d1). Variables (T2 : measurableType d2) (T : pointedType) (f1 : T -> T1) (f2 : T -> T2). Variables (T3 : Type) (g : T3 -> T). Lemma preimage_classes_comp : preimage_classes (f1 \o g) (f2 \o g) = preimage_class setT g (preimage_classes f1 f2). Proof. rewrite {1}/preimage_classes -sigma_algebra_preimage_classE; congr (<>). rewrite predeqE => C; split. - move=> [[A mA <-{C}]|[A mA <-{C}]]. + by exists (f1 @^-1` A) => //; left; exists A => //; rewrite setTI. + by exists (f2 @^-1` A) => //; right; exists A => //; rewrite setTI. - move=> [A [[B mB <-{A} <-{C}]|[B mB <-{A} <-{C}]]]. + by left; rewrite !setTI; exists B => //; rewrite setTI. + by right; rewrite !setTI; exists B => //; rewrite setTI. Qed. End product_lemma. Definition measure_prod_display : (measure_display * measure_display) -> measure_display. Proof. exact. Qed. Section product_salgebra_instance. Variables (d1 d2 : measure_display). Variables (T1 : measurableType d1) (T2 : measurableType d2). Let f1 := @fst T1 T2. Let f2 := @snd T1 T2. Lemma prod_salgebra_set0 : preimage_classes f1 f2 (set0 : set (T1 * T2)). Proof. exact: sigma_algebra0. Qed. Lemma prod_salgebra_setC A : preimage_classes f1 f2 A -> preimage_classes f1 f2 (~` A). Proof. exact: sigma_algebraC. Qed. Lemma prod_salgebra_bigcup (F : _^nat) : (forall i, preimage_classes f1 f2 (F i)) -> preimage_classes f1 f2 (\bigcup_i (F i)). Proof. exact: sigma_algebra_bigcup. Qed. HB.instance Definition prod_salgebra_mixin := @isMeasurable.Build (measure_prod_display (d1, d2)) (T1 * T2)%type (Pointed.class _) (preimage_classes f1 f2) (prod_salgebra_set0) (prod_salgebra_setC) (prod_salgebra_bigcup). End product_salgebra_instance. Notation "p .-prod" := (measure_prod_display p) : measure_display_scope. Notation "p .-prod.-measurable" := ((p.-prod).-measurable : set (set (_ * _))) : classical_set_scope. Lemma measurableM d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (A : set T1) (B : set T2) : measurable A -> measurable B -> measurable (A `*` B). Proof. move=> mA mB. have -> : A `*` B = (A `*` setT) `&` (setT `*` B) :> set (T1 * T2). by rewrite -{1}(setIT A) -{1}(setTI B) setMI. rewrite setMT setTM; apply: measurableI. - by apply: sub_sigma_algebra; left; exists A => //; rewrite setTI. - by apply: sub_sigma_algebra; right; exists B => //; rewrite setTI. Qed. Section product_salgebra_measurableType. Variables (d1 d2 : measure_display). Variables (T1 : measurableType d1) (T2 : measurableType d2). Let M1 := @measurable _ T1. Let M2 := @measurable _ T2. Let M1xM2 := [set A `*` B | A in M1 & B in M2]. Lemma measurable_prod_measurableType : (d1, d2).-prod.-measurable = <>. Proof. rewrite eqEsubset; split. apply: smallest_sub; first exact: smallest_sigma_algebra. rewrite subUset; split. - have /subset_trans : preimage_class setT fst M1 `<=` M1xM2. by move=> _ [X MX <-]; exists X=> //; exists setT; rewrite /M2 // setIC//. by apply; exact: sub_sigma_algebra. - have /subset_trans : preimage_class setT snd M2 `<=` M1xM2. by move=> _ [Y MY <-]; exists setT; rewrite /M1 //; exists Y. by apply; exact: sub_sigma_algebra. apply: smallest_sub; first exact: smallest_sigma_algebra. by move=> _ [A MA] [B MB] <-; apply: measurableM => //; exact: sub_sigma_algebra. Qed. End product_salgebra_measurableType. Section product_salgebra_g_measurableTypeR. Variables (d1 : measure_display) (T1 : measurableType d1). Variables (T2 : pointedType) (C2 : set (set T2)). Hypothesis (setTC2 : setT `<=` C2). (* NB: useful? *) Lemma measurable_prod_g_measurableTypeR : @measurable _ [the measurableType _ of T1 * salgebraType C2 : Type] = <>. Proof. rewrite measurable_prod_measurableType //; congr (<>). rewrite predeqE => X; split=> [[A mA] [B mB] <-{X}|[A C1A] [B C2B] <-{X}]. by exists A => //; exists B => //; exact: setTC2. by exists A => //; exists B => //; exact: sub_sigma_algebra. Qed. End product_salgebra_g_measurableTypeR. Section product_salgebra_g_measurableType. Variables (T1 T2 : pointedType) (C1 : set (set T1)) (C2 : set (set T2)). Hypotheses (setTC1 : setT `<=` C1) (setTC2 : setT `<=` C2). Lemma measurable_prod_g_measurableType : @measurable _ [the measurableType _ of salgebraType C1 * salgebraType C2 : Type] = <>. Proof. rewrite measurable_prod_measurableType //; congr (<>). rewrite predeqE => X; split=> [[A mA] [B mB] <-{X}|[A C1A] [B C2B] <-{X}]. by exists A; [exact: setTC1|exists B => //; exact: setTC2]. by exists A; [exact: sub_sigma_algebra|exists B => //; exact: sub_sigma_algebra]. Qed. End product_salgebra_g_measurableType. Section prod_measurable_fun. Variables (d d1 d2 : measure_display). Variables (T : measurableType d) (T1 : measurableType d1). Variables (T2 : measurableType d2) (f : T -> T1 * T2). Lemma prod_measurable_funP : measurable_fun setT f <-> measurable_fun setT (fst \o f) /\ measurable_fun setT (snd \o f). Proof. apply: (@iff_trans _ (preimage_classes (fst \o f) (snd \o f) `<=` measurable)). - rewrite preimage_classes_comp; split=> [mf A [C HC <-]|f12]; first exact: mf. by move=> _ A mA; apply: f12; exists A. - split => [h|[mf1 mf2]]. split => _ A mA; apply: h; apply: sub_sigma_algebra; by [left; exists A|right; exists A]. apply: smallest_sub; first exact: sigma_algebra_measurable. by rewrite subUset; split=> [|] A [C mC <-]; [exact: mf1|exact: mf2]. Qed. End prod_measurable_fun. Section partial_measurable_fun. Variables (d d1 d2 : measure_display). Variables (T : measurableType d) (T1 : measurableType d1). Variables (T2 : measurableType d2) (f : T1 * T2 -> T). Lemma measurable_fun_prod1 x : measurable_fun setT f -> measurable_fun setT (fun y => f (x, y)). Proof. move=> mf; pose pairx := fun y : T2 => (x, y). have m1pairx : measurable_fun setT (fst \o pairx) by exact/measurable_fun_cst. have m2pairx : measurable_fun setT (snd \o pairx) by exact/measurable_fun_id. have : measurable_fun setT pairx by exact/(proj2 (prod_measurable_funP _)). exact: measurable_fun_comp. Qed. Lemma measurable_fun_prod2 y : measurable_fun setT f -> measurable_fun setT (fun x => f (x, y)). Proof. move=> mf; pose pairy := fun x : T1 => (x, y). have m1pairy : measurable_fun setT (fst \o pairy) by exact/measurable_fun_id. have m2pairy : measurable_fun setT (snd \o pairy) by exact/measurable_fun_cst. have : measurable_fun setT pairy by exact/(proj2 (prod_measurable_funP _)). exact: measurable_fun_comp. Qed. End partial_measurable_fun.