From mathcomp Require Import all_ssreflect all_fingroup all_algebra. From mathcomp Require Import all_solvable all_field. From Abel Require Import various char0. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GRing.Theory. Local Open Scope ring_scope. Local Notation "p ^^ f" := (map_poly f p) (at level 30, f at level 30, format "p ^^ f"). Section Prodv. Import AEnd_FinGroup. Variables (F0 : fieldType) (L : splittingFieldType F0). Implicit Types (K E F : {subfield L}). Lemma galois_subW E F : galois E F -> (E <= F)%VS. Proof. by case/andP. Qed. Lemma galois_normalW E F : galois E F -> (normalField E F)%VS. Proof. by case/and3P. Qed. Lemma galois_separableW E F : galois E F -> (separable E F)%VS. Proof. by case/and3P. Qed. Lemma normalField_refl E : normalField E E. Proof. apply/forallP => /= u; apply/implyP; rewrite in_set. by move=> /andP[/andP[_ /fixedSpace_limg->]]. Qed. Hint Resolve normalField_refl : core. Lemma galois_refl E : galois E E. Proof. by rewrite /galois subvv separable_refl normalField_refl. Qed. Lemma gal1 K (g : gal_of K) : g \in 'Gal(K / 1%VS)%g. Proof. by rewrite gal_kHom ?sub1v// k1HomE ahomWin. Qed. Lemma Fadjoin_sub E x y : x \in <>%VS -> (<> <= <>)%VS. Proof. by move=> xEy; apply/FadjoinP; rewrite subv_adjoin. Qed. Lemma galvv E : ('Gal(E / E) = 1)%g. Proof. apply/trivgP/subsetP=> u uG; rewrite inE. by apply/gal_eqP => x xE; rewrite gal_id (fixed_gal _ uG). Qed. Program Canonical prodv_aspace_law := @Monoid.Law {subfield L} 1%AS (@prodv_aspace _ _) _ _ _. Next Obligation. by move=> *; apply/val_inj/prodvA. Qed. Next Obligation. by move=> *; apply/val_inj/prod1v. Qed. Next Obligation. by move=> *; apply/val_inj/prodv1. Qed. Program Canonical prodv_aspace_com_law := @Monoid.ComLaw {subfield L} 1%AS prodv_aspace_law _. Next Obligation. by move=> *; apply/val_inj/prodvC. Qed. Lemma big_prodv_eq_aspace I (r : seq I) (P : {pred I}) (F : I -> {aspace L}) : (\big[@prodv _ _/1%VS]_(i <- r | P i) F i) = (\big[@prodv_aspace _ _/1%AS]_(i <- r | P i) F i). Proof. by elim/big_rec2: _ => // i U V _ ->. Qed. Lemma separable_mulv K x y : separable_element K x -> separable_element K y -> separable_element K (x * y). Proof. move/(separable_elementS (subv_adjoin K y))=> sepKy_x sepKy. have [z defKz] := Primitive_Element_Theorem x sepKy. have /(adjoin_separableP _): x * y \in <>%VS. by rewrite -defKz rpredM ?memv_adjoin // subvP_adjoin ?memv_adjoin. apply; apply: adjoin_separable sepKy (adjoin_separable sepKy_x _). by rewrite defKz base_separable ?memv_adjoin. Qed. Lemma separable_prod I r (P : pred I) (v_ : I -> L) (K : {subfield L}) : (forall i, P i -> separable_element K (v_ i)) -> separable_element K (\prod_(i <- r | P i) v_ i). Proof. move=> sepKi. by elim/big_ind: _; [apply/base_separable/mem1v | apply: separable_mulv |]. Qed. Lemma separable_prodv (k K1 K2 : {subfield L}) : separable k (K1 * K2) = (separable k K1 && separable k K2). Proof. apply/separableP/andP => [sepK12|]. split; apply/separableP => y yK; rewrite sepK12//. by apply: (subv_trans yK); rewrite field_subvMr. by apply: (subv_trans yK); rewrite field_subvMl. move=> [/separableP sepK1 /separableP sepK2]. move=> x /memv_mulP[n [us [vs [/allP/= usK /allP/= vsK ->]]]]. rewrite separable_sum// => i _; rewrite separable_mulv//. by rewrite sepK1 ?usK ?mem_tnth. by rewrite sepK2 ?vsK ?mem_tnth. Qed. Lemma separable_super (k K : {subfield L}) : (k <= K)%VS -> separable K k. Proof. by move=> /separableSr->//; rewrite separable_refl. Qed. Lemma separable1 (k : {subfield L}) : separable k 1. Proof. by rewrite separable_super// ?sub1v. Qed. Lemma separable_big_prodv I r (P : {pred I}) (k : {subfield L}) (K : I -> {subfield L}) : separable k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i) = \big[andb/true]_(i <- r | P i) separable k (K i). Proof. rewrite big_prodv_eq_aspace; elim/big_rec2: _ => [|i E b _]. by rewrite separable1. by rewrite separable_prodv => ->. Qed. Lemma separable_big_prodvW I r (P : {pred I}) (k : {subfield L}) (K : I -> {subfield L}) : (forall i, P i -> separable k (K i)) -> separable k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i). Proof. move=> sepKi; rewrite separable_big_prodv big_tnth big_andE. by apply/'forall_implyP => i /sepKi. Qed. Lemma separable_prodvr (k K F : {subfield L}) : (k <= F)%VS -> separable k K -> separable F (K * F). Proof. by move=> kF sepkK; rewrite separable_prodv separable_refl (separableSl kF). Qed. Lemma normal_prodvr (k K F : {subfield L}) : (k <= K)%VS -> (k <= F)%VS -> normalField k K -> normalField F (K * F). Proof. move=> kK kF /(splitting_normalField kK) [p pk [rs p_eq krs]]. apply/splitting_normalField; rewrite ?field_subvMl//; exists p. by apply: polyOverS pk => x; apply: subvP. exists rs => //; apply/eqP; rewrite eqEsubv; apply/andP; split. apply/Fadjoin_seqP; rewrite field_subvMl; split => //= r rrs. by apply: (subvP (field_subvMr _ _)); rewrite -krs seqv_sub_adjoin. apply/prodvP => x y xK yF; rewrite rpredM//; last first. by rewrite (subvP (subv_adjoin_seq _ _))//. by rewrite -krs in xK; apply: subvP xK; apply: adjoin_seqSl. Qed. Lemma galois_prodvr (k K F : {subfield L}) : (k <= F)%VS -> galois k K -> galois F (K * F). Proof. move=> kF /and3P[kK sep norm]; rewrite /galois field_subvMl/=. by rewrite (separable_prodvr kF)// (normal_prodvr kK kF). Qed. (** N/A **) Lemma capv_galois (k K F : {subfield L}) : (k <= F)%VS -> galois k K -> galois (K :&: F) K. Proof. move=> kF /splitting_galoisField [p [pk p_sep [rs p_eq krs]]]. have k_subKF: (k <= K :&: F)%VS. apply/subvP => x xk. by rewrite memv_cap (subvP kF)// -krs (subvP (subv_adjoin_seq _ _)). apply/splitting_galoisField; exists p; split => //. by apply: polyOverS pk; apply/subvP. exists rs => //; apply/eqP; rewrite -krs eqEsubv andbC adjoin_seqSl//=. by apply/Fadjoin_seqP; split; [rewrite /= krs capvSl|apply: seqv_sub_adjoin]. Qed. Lemma kAutEnormal (K E : {subfield L}) (f : 'End(L)) : (K <= E)%VS -> normalField K E -> kAut K E f = kHom K E f. Proof. move=> KE normalKE; rewrite kAutE; have [f_hom|]//= := boolP (kHom _ _ _). apply/subvP => _/memv_imgP[x Ex ->]. have := kHom_to_gal _ normalKE f_hom; rewrite subvv KE => -[//|g gK ->//]. by rewrite memv_gal. Qed. Lemma fixedField_sub (K E : {subfield L}) (A : {set gal_of E}) : galois K E -> (('Gal(E / K))%g \subset A) -> (fixedField A <= K)%VS. Proof. by move=> /galois_fixedField{2}<- subA; apply: fixedFieldS. Qed. Lemma galois_sub (K E : {subfield L}) (A : {group gal_of E}) : galois K E -> (('Gal(E / K))%g \subset A) = (fixedField A <= K)%VS. Proof. move=> galKE; apply/idP/idP; first exact: fixedField_sub. move=> /galS-/(_ E)/=/subset_trans->//. by apply/subsetP => u; rewrite gal_fixedField. Qed. Lemma galois_eq (K E : {subfield L}) (A : {group gal_of E}) : galois K E -> ('Gal(E / K)%g == A) = (fixedField A == K)%VS. Proof. move=> galKE; have KE := galois_subW galKE. by rewrite eqEsubset eqEsubv galois_sub// galois_connection. Qed. Lemma galois_misom (k K F : {subfield L}) (H := 'Gal((K * F) / F)%g) (H' := 'Gal (K / (K :&: F))%g) : galois k K -> (k <= F)%VS -> misom H H' (normalField_cast K). Proof. move=> gal_kK kF; have kK := galois_subW gal_kK. have normal_kK := galois_normalW gal_kK. have KF u : u \in H -> (u @: K <= K)%VS. move=> Hu; suff : kHom k K u by rewrite -kAutEnormal// kAutE => /andP[]. by apply/kAHomP => x kx; rewrite (fixed_gal _ Hu) ?field_subvMl ?(subvP kF). have r_H_morphic : morphic H (normalField_cast K). apply/morphicP => u v uH vH; apply/eqP/gal_eqP => x Kx. rewrite galM// [LHS]galK ?KF ?groupM//. rewrite 2?galK ?KF//; last by apply/(subvP (KF u uH)); rewrite memv_img. by rewrite galM//; apply: subvP Kx; apply: field_subvMr. apply/misomP; exists r_H_morphic; apply/isomP; split. apply/subsetP => /= u ker_u; have Hu := dom_ker ker_u. apply/set1gP/eqP/gal_eqP => _ /memv_mulP[n [xs [ys [xsP ysP ->]]]]. rewrite rmorph_sum/= gal_id; apply: eq_bigr => i _; rewrite rmorphM/=. have [xiK yiK] := (allP xsP _ (mem_tnth i _), allP ysP _ (mem_tnth i _)). have /eqP/gal_eqP/(_ _ xiK) := mker ker_u. rewrite /normalField_cast galK ?KF// => ->; rewrite gal_id. by rewrite (fixed_gal _ Hu)// field_subvMl. apply/eqP; rewrite eq_sym galois_eq ?(capv_galois kF gal_kK)//. rewrite eqEsubv; apply/andP; split; apply/subvP => x; last first. rewrite memv_cap => /andP[Kx Fx]. apply/fixedFieldP => // _ /morphimP[/= v Hv _ ->]. rewrite morphmE /normalField_cast galK// ?KF//. by rewrite (fixed_gal _ Hv)// field_subvMl. move=> /mem_fixedFieldP[Kx xP]; rewrite memv_cap Kx/=. rewrite -(galois_fixedField (galois_prodvr kF gal_kK)). apply/fixedFieldP; first by rewrite -[x]mulr1 memv_mul// rpred1. move=> u Hu; have := xP (normalField_cast _ u). by rewrite /normalField_cast galK ?KF//; apply; apply/morphimP; exists u. Qed. Lemma galois_isog (k K F : {subfield L}) : galois k K -> (k <= F)%VS -> 'Gal((K * F) / F) \isog 'Gal (K / K :&: F). Proof. by move=> galkK /(galois_misom galkK) /misom_isog. Qed. Lemma subv_big_prodv_seq I r (P : {pred I}) (k : {subfield L}) (K : I -> {subfield L}) : (forall i, P i -> (k <= K i)%VS) -> ~~ nilp [seq i <- r | P i] -> (k <= \big[@prodv _ _/1]_(i <- r | P i) K i)%VS. Proof. move=> normkK; elim: r => [|i r IHr]; rewrite !(big_nil, big_cons)//=. case: ifP IHr => //= Pi; rewrite -big_filter. have [->|_ IHr]//= := altP nilP; first by rewrite big_nil prodv1 normkK. by rewrite -[X in (X <= _)%VS]prodv_id prodvS ?IHr ?normkK. Qed. Lemma subv_big_prodv (I : finType) (D : {pred I}) (k : {subfield L}) (K : I -> {subfield L}) : (#|D| > 0)%N -> (forall i, D i -> k <= K i)%VS -> (k <= \big[@prodv _ _/1]_(i in D) K i)%VS. Proof. move=> D_gt0 DK; apply: subv_big_prodv_seq => //. by rewrite /nilp size_filter -sum1_count sum1_card -lt0n. Qed. Lemma normal_prodv (k K1 K2 : {subfield L}) : normalField k K1 -> normalField k K2 -> normalField k (K1 * K2). Proof. move=> /'forall_implyP/(_ _ _)/eqP endK1 /'forall_implyP/(_ _ _)/eqP endK2. by apply/'forall_implyP => s s_end; rewrite aimgM endK1// endK2. Qed. Lemma normal_big_prodv I r (P : {pred I}) (k : {subfield L}) (K : I -> {subfield L}) : (forall i, P i -> normalField k (K i)) -> normalField k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i). Proof. move=> normkK; elim: r => [|i r IHr]; rewrite !(big_nil, big_cons). apply/normalFieldP => a a1; exists [:: a]; rewrite /= ?a1//. rewrite big_cons big_nil mulr1; apply: minPoly_XsubC. by apply: subvP a1; rewrite sub1v. rewrite big_prodv_eq_aspace in IHr *; case: ifP => // Pi. by rewrite normal_prodv// normkK. Qed. Lemma galois_prodv (k K1 K2 : {subfield L}) : galois k K1 -> galois k K2 -> galois k (K1 * K2). Proof. rewrite /galois => /and3P[kK1 sepK1 normK1] /and3P[kK2 sepK2 normK2]. rewrite -[X in (X <= _)%VS]prodv_id prodvS//=. by rewrite separable_prodv ?sepK1 ?sepK2// normal_prodv. Qed. Lemma galois_big_prodv_seq I r (P : {pred I}) (k : {subfield L}) (K : I -> {subfield L}) : (forall i, P i -> galois k (K i)) -> ~~ nilp [seq i <- r | P i] -> galois k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i). Proof. move=> galkK brP; pose gW := (galois_subW, galois_normalW, galois_separableW). pose bpv := (subv_big_prodv_seq, separable_big_prodvW, normal_big_prodv). by rewrite /galois !bpv// => i Pi; rewrite /= gW ?galkK. Qed. Lemma galois_big_prodv (I : finType) (D : {pred I}) (k : {subfield L}) (K : I -> {subfield L}) : (#|D| > 0)%N -> (forall i, D i -> galois k (K i)) -> galois k (\big[@prodv _ _/1%VS]_(i in D) K i). Proof. move=> D_gt0 galkK; apply: galois_big_prodv_seq => //. by rewrite /nilp size_filter -sum1_count sum1_card -lt0n. Qed. Definition gal_big_prodv_cast_subdef {n} {K : 'I_n -> {subfield L}} (s : gal_of (\big[@prodv_aspace _ _/1%AS]_(i < n) K i)) : {dffun forall i, gal_of (K i)} := [ffun i => normalField_cast (K i) s]. Lemma gal_big_prodv_cast_morphic n (k : {subfield L}) (K : 'I_n -> {subfield L}) : (forall i, galois k (K i)) -> morphic 'Gal((\big[@prodv_aspace _ _/1%AS]_(i < n) K i)%VS / k) gal_big_prodv_cast_subdef. Proof. rewrite /gal_big_prodv_cast_subdef => galK. apply/'forall_implyP => -[s t]; rewrite inE => /andP[sG tG]. apply/eqP/ffunP => i; rewrite !ffunE/=. have n_gt0 : (n > 0)%N by case: {+}n i => -[]. rewrite (@normalField_castM _ _ _ k) ?galois_normalW//. by rewrite [(k <= _)%VS]galois_subW//= (bigD1 i)//= field_subvMr. Qed. Definition gal_big_prodv_cast n (k : {subfield L}) (K : 'I_n -> {subfield L}) (galK : forall i, galois k (K i)) := [morphism of morphm (gal_big_prodv_cast_morphic galK)]. Lemma gal_big_prodv_cast_inj n (k : {subfield L}) (K : 'I_n -> {subfield L}) (galK : forall i, galois k (K i)) : ('injm (gal_big_prodv_cast galK))%g. Proof. apply/subsetP => /= s s_ker; rewrite inE; apply/gal_eqP => x xK. suff: x \in fixedField [set s]. by move=> /mem_fixedFieldP [_ /(_ s)]; rewrite inE gal_id; apply. apply/subvP: x xK; rewrite /= -[X in (X <= _)%VS]big_prodv_eq_aspace. apply/big_prod_subfieldP => u uK /=; rewrite rpred_prod// => i _. apply/fixedFieldP; first by rewrite (bigD1 i)// -[u i]mulr1 memv_mul ?rpred1 ?uK. move=> s'; rewrite inE => /eqP->{s'}; have /mker := s_ker. rewrite /gal_big_prodv_cast/= morphmE /gal_big_prodv_cast_subdef. move=> /ffunP-/(_ i); rewrite !ffunE. move=> /eqP/gal_eqP/(_ _ (uK _ _))-/(_ isT); rewrite gal_id. rewrite (@normalField_cast_eq _ _ _ k) ?uK ?galois_normalW ?(dom_ker s_ker)//=. by rewrite [(k <= _)%VS]galois_subW//= (bigD1 i)//= field_subvMr. Qed. Lemma img_gal_big_prodv_cast_sub n (k : {subfield L}) (K : 'I_n -> {subfield L}) (galK : forall i, galois k (K i)) (E := (\big[@prodv_aspace _ _/1%AS]_(i < n) K i)%AS) (G := 'Gal(E / k)%g): (gal_big_prodv_cast galK @* G \subset setXn (fun i => 'Gal(K i / k)))%g. Proof. case: n => [|n] in K galK E G *. rewrite setX0; apply/subsetP => /= x _; rewrite !inE. by apply/eqP/ffunP => -[]. apply/subsetP => /= x; rewrite !inE morphimEdom => /imsetP[s sG ->]/=. apply/forallP => i/=; rewrite morphmE/= ffunE/=. rewrite -(@normalField_img _ _ E)// ?galois_normalW//. - by rewrite (galois_subW (galK _))//= /E (bigD1 i)//= field_subvMr. - by move=> ? ?/=; rewrite mem_morphim//. - by rewrite /E/= -big_prodv_eq_aspace galois_big_prodv//= card_ord. Qed. End Prodv. Hint Resolve normalField_refl : core. Section map_hom. Variables (F0 : fieldType) (L L' : splittingFieldType F0). Variable (iota : 'Hom(L, L')). Definition map_hom (f : 'End(L)) := (iota \o f \o iota^-1)%VF. Definition inv_map_hom (f : 'End(L')) := (iota^-1 \o f \o iota)%VF. Lemma map_hom_is_linear : linear map_hom. Proof. move=> /= k a b; apply/lfunP => x; rewrite /map_hom. by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP. Qed. Canonical map_hom_linear := Linear map_hom_is_linear. Lemma inv_map_hom_is_linear : linear inv_map_hom. Proof. move=> /= k a b; apply/lfunP => x; rewrite /map_hom. by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP. Qed. Canonical inv_map_hom_linear := Linear inv_map_hom_is_linear. Lemma lker0_map_homC (f : 'End(L)) : lker iota == 0%VS -> (map_hom f \o iota = iota \o f)%VF. Proof. by move=> kiota0; apply/lfunP => x; rewrite !comp_lfunE lker0_lfunK. Qed. Lemma lker0_map_homE (f : 'End(L)) (x : L) : lker iota == 0%VS -> map_hom f (iota x) = iota (f x). Proof. by rewrite !comp_lfunE => /lker0_lfunK->. Qed. Lemma inv_map_homC (f : 'End(L')) : (f @: limg iota <= limg iota)%VS -> (iota \o inv_map_hom f = f \o iota)%VF. Proof. move=> fiota; apply/lfunP => x. rewrite !comp_lfunE limg_lfunVK//. by rewrite memvE (subv_trans _ fiota)// -memvE !memv_img ?memvf. Qed. Lemma inv_map_homE (f : 'End(L')) (x : L) : f (iota x) \in (limg iota)%VS -> iota (inv_map_hom f x) = f (iota x). Proof. by move=> fiotax; rewrite !comp_lfunE limg_lfunVK. Qed. End map_hom. Section map_ahom. Variables (F0 : fieldType) (L L' : splittingFieldType F0). Variable (iota : 'AHom(L, L')). Lemma map_hom_algE (f : 'End(L)) (x : L) : map_hom iota f (iota x) = iota (f x). Proof. by rewrite lker0_map_homE// AHom_lker0. Qed. Lemma map_hom_algC (f : 'End(L)) : (map_hom iota f \o iota = iota \o f)%VF. Proof. by rewrite lker0_map_homC// AHom_lker0. Qed. Lemma map_ahom_in (f : 'End(L)) (E : {vspace L}) : ahom_in (iota @: E) (map_hom iota f) = ahom_in E f. Proof. apply/ahom_inP/ahom_inP => -[mfM mf1]; last first. split; last by rewrite -(rmorph1 [rmorphism of iota]) map_hom_algE mf1. move=> _ _ /memv_imgP[u uE ->] /memv_imgP[v vE ->]. by rewrite !(map_hom_algE, =^~rmorphM)/= mfM. split=> [x y xE yE|]; last first. have : map_hom iota f (iota 1) = iota 1 by rewrite rmorph1. by rewrite map_hom_algE => /fmorph_inj. have := mfM _ _ (memv_img iota xE) (memv_img iota yE). by rewrite !(map_hom_algE, =^~rmorphM)/= => /fmorph_inj. Qed. Lemma map_ahom_subproof (f : 'AEnd(L)) : {g : 'AEnd(L') | (g \o iota)%VF = (iota \o f)%VF }. Proof. have : kHom 1%VS (iota @: {: L})%VS (map_hom iota f). by rewrite k1HomE map_ahom_in ahomWin. move=> /kHom_to_AEnd[g gP]; exists g. apply/lfunP => x; rewrite !comp_lfunE/=. by rewrite -map_hom_algE gP ?memv_img// memvf. Qed. Lemma inv_map_hom_kHom (E F : {subfield L}) (f : 'End(L')) : (E <= F)%VS -> ((f @: (iota @: F)) <= (limg iota))%VS -> kHom E F (inv_map_hom iota f) = kHom (iota @: E) (iota @: F) f. Proof. move=> EF fiotaF; have fiotaf u : u \in F -> f (iota u) \in limg iota. by move=> uF; apply: subv_trans fiotaF; do !apply: memv_img. apply/kHomP/kHomP => -[/= fM s_id]. split=> [_ _/memv_imgP[x xF ->]|_] /memv_imgP[y yF ->]. rewrite -!rmorphM/= -3?inv_map_homE ?memv_img ?memvf ?fiotaf ?rpredM//. by rewrite fM// rmorphM. by rewrite -inv_map_homE ?s_id// fiotaf//; apply: subv_trans EF. split=> [x y xF yF|x xF]; apply: (fmorph_inj [rmorphism of iota]) => /=. by rewrite rmorphM/= !inv_map_homE ?fiotaf ?rpredM// rmorphM fM ?memv_img. by rewrite inv_map_homE s_id ?memv_img ?memvf. Qed. Lemma limg_inv_map_ahom (E : {subfield L}) (f : 'End(L')) : ((f @: (iota @: E)) <= (iota @: E))%VS -> (iota @: (inv_map_hom iota f @: E))%VS = (f @: (iota @: E))%VS. Proof. move=> fiotaE; rewrite -!limg_comp; apply/vspaceP => x. have fiota u : u \in E -> f (iota u) \in limg iota. move=> uE; rewrite memvE (@subv_trans _ _ (f @: (iota @: E))%VS) //. by rewrite -memvE !(memv_img, limgS). by rewrite (subv_trans fiotaE) ?limgS ?subvf. by apply/memv_imgP/memv_imgP => -[u uE ->]; exists u => //; rewrite [LHS]comp_lfunE [RHS]comp_lfunE inv_map_homE// ?fiota. Qed. Lemma inv_map_hom_kAut (E F : {subfield L}) (f : 'End(L')) : (E <= F)%VS -> ((f @: (iota @: F)) <= (iota @: F))%VS -> kAut E F (inv_map_hom iota f) = kAut (iota @: E) (iota @: F) f. Proof. move=> EF fiotaF; rewrite !kAutE -limg_inv_map_ahom// limg_ker0 ?AHom_lker0//. by rewrite inv_map_hom_kHom// (subv_trans fiotaF) ?limgS ?subvf. Qed. Lemma inv_map_ahom_in (f : 'End(L')) (E : {subfield L}) : (f @: (iota @: E) <= limg iota)%VS -> ahom_in E (inv_map_hom iota f) = ahom_in (iota @: E) f. Proof. by move=> fiotaE; rewrite -!k1HomE inv_map_hom_kHom ?sub1v// aimg1. Qed. Lemma inv_map_is_ahom (E : {subfield L}) (f : gal_of (iota @: E)) : ahom_in E (inv_map_hom iota f). Proof. rewrite inv_map_ahom_in ?limg_gal ?limgS ?subvf//. by rewrite -k1HomE -gal_kHom ?sub1v ?gal1. Qed. Canonical inv_map_ahom (f : gal_of (limg iota)) := AHom (inv_map_is_ahom f). Import AEnd_FinGroup. Definition map_ahom (f : 'AEnd(L)) := projT1 (map_ahom_subproof f). Lemma map_ahomC (f : 'AEnd(L)) : (map_ahom f \o iota)%VF = (iota \o f)%VF. Proof. by rewrite /map_ahom; case: map_ahom_subproof. Qed. Lemma map_ahomE (f : 'AEnd(L)) x : map_ahom f (iota x) = iota (f x). Proof. by rewrite -!comp_lfunE map_ahomC. Qed. Lemma limg_map_ahom (f : 'AEnd(L)) (E : {vspace L}) : (map_ahom f @: (iota @: E))%VS = (iota @: (f @: E))%VS. Proof. by rewrite -!limg_comp map_ahomC. Qed. Lemma map_ahom_kAut s (E F : {subfield L}) : kAut (iota @: E)%VS (iota @: F)%VS (map_ahom s) = kAut E F s. Proof. rewrite !kAutE limg_map_ahom limg_ker0 ?AHom_lker0// [LHS]andbC [RHS]andbC. have [sF_sub_F|]//= := boolP (s @: F <= F)%VS. apply/kAHomP/kAHomP => [s_id x xE|s_id _/memv_imgP[x xE ->]]; last first. by rewrite map_ahomE s_id. apply: (fmorph_inj [rmorphism of iota]). by rewrite /= -map_ahomE s_id// memv_img. Qed. Lemma map_ahom_kAEnd s (E F : {subfield L}) : (map_ahom s \in kAEnd (iota @: E)%VS (iota @: F)%VS) = (s \in kAEnd E F). Proof. by rewrite !inE map_ahom_kAut. Qed. Lemma map_ahom_kEnd_img s : map_ahom s \in kAEnd 1 (iota @: {: L})%AS. Proof. rewrite inE -(aimg1 iota) map_ahom_kAut// kAutfE. exact/kHom_lrmorphism/ahom_is_lrmorphism. Qed. End map_ahom. Section gal_kAEnd. Variables (F0 : fieldType) (L : splittingFieldType F0). Import AEnd_FinGroup. Lemma kAEndSl (k K F : {subfield L}) : (k <= K)%VS -> (kAEnd K F \subset kAEnd k F). Proof. by move=> EK; apply/subsetP => x; rewrite !inE; apply: kAutS. Qed. Lemma ker_gal (E : {subfield L}) : ('ker (gal E))%g = kAEndf E. Proof. apply/setP => g; rewrite !inE kAut1E/= !kAutE subvf andbT subfield_closed. apply/andP/idP => [[gE /gal_eqP galg1]|/kAHomP g_id]. by apply/kAHomP => x xE; have := galg1 _ xE; rewrite gal_id galK// => ->. have gE : (g @: E <= E)%VS by apply/subvP => _/memv_imgP[x ? ->]; rewrite g_id. by split=> //; apply/gal_eqP => x xE; rewrite gal_id galK// g_id. Qed. Lemma kAEnd_split (K E : {subfield L}) : kAEnd K E = kAEnd 1 E :&: kAEndf K. Proof. apply/setP => f; rewrite !inE kAut1E !kAutE subvf andbT andbC. by case fE : (f @: E <= E)%VS => //=; apply/kAHomP/kAHomP. Qed. Lemma gal_kAEndf (K E : {subfield L}) : (K <= E)%VS -> (gal E @* kAEndf K)%g = (gal E @* kAEnd K E)%g :> {set _}. Proof. move=> KE; rewrite kAEnd_split morphimIG ?ker_gal ?kAEndSl// (setIidPr _)//=. by rewrite (subset_trans (morphim_sub _ _))//= morphimS// subfield_closed. Qed. End gal_kAEnd. Section map_gal. Variables (F0 : fieldType) (L L' : splittingFieldType F0). Variable (iota : 'AHom(L, L')). Variables (E : {subfield L}). Let iota_ker0 := AHom_lker0 iota. Definition map_gal (g : gal_of E) : gal_of (iota @: E) := gal (iota @: E) (map_ahom iota g). Lemma map_galE (g : gal_of E) : {in E, forall x, map_gal g (iota x) = iota (g x)}. Proof. move=> x xE /=; rewrite galK ?memv_img ?memvf//=. by rewrite -!comp_lfunE map_ahomC. by rewrite limg_map_ahom limg_gal. Qed. Definition map_gal_is_morphism : {in setT &, {morph map_gal : x y / (x * y)%g >-> (x * y)%g}}. Proof. move=> /= f g _ _; apply/eqP/gal_eqP => _/memv_imgP[x xE ->]. rewrite galM ?memv_img// 3?map_galE// ?galM//. by rewrite -[in X in _ \in X](limg_gal f) memv_img. Qed. Canonical map_gal_morphism := Morphism map_gal_is_morphism. Import AEnd_FinGroup. Lemma map_galK : {in kAEnd 1 E, map_gal \o gal E =1 gal (iota @: E) \o map_ahom iota }. Proof. move=> s; rewrite inE kAut1E => sE. apply/eqP/gal_eqP => _/memv_imgP[x xE ->]/=. rewrite map_galE// !galK ?memv_img ?map_ahomE//. by rewrite -limg_comp map_ahomC limg_comp limgS. Qed. Lemma map_gal_inj : ('injm map_gal)%g. Proof. apply/injmP => /= f g _ _ eq_fg; apply/eqP/gal_eqP => x xE. have /eqP/gal_eqP/(_ _ (memv_img iota xE)) := eq_fg. by rewrite !map_galE// => /fmorph_inj. Qed. Lemma img_map_gal (K : {subfield L}) : (map_gal @* 'Gal(E / K))%g = 'Gal(iota @: E / iota @: K)%g. Proof. wlog subKE : K / (K <= E)%VS => [hwlog|]. by rewrite gal_cap hwlog ?capvSr// aimg_cap -gal_cap. rewrite /'Gal(_ / _)%g -aimg_cap !genGid/= (capv_idPl _)//. rewrite -!gal_kAEndf ?limgS// -morphim_comp/=. apply/setP => u; apply/imsetP/imsetP => /= [[f faut ->]|[f' f'aut ->]] {u}. have := faut; rewrite !inE !kAut1E !kAutE/= !subfield_closed !subvf !andbT. move=> /andP[fE /kAHomP fK]. exists (map_ahom iota f). rewrite !inE !kAut1E !kAutE/= !subvf !andbT limg_map_ahom limgS//=. by apply/kAHomP => _/memv_imgP[x xK ->]; rewrite map_ahomE ?fK. apply/eqP/gal_eqP => _/memv_imgP[x xK ->]. by rewrite map_galE// !galK ?memv_img ?limg_map_ahom ?map_ahomE// limg_ker0//. have := f'aut; rewrite !inE !kAut1E !kAutE/= !subvf !andbT. have -> : agenv (iota @: E) = (iota @: E)%VS by rewrite subfield_closed. move=> /andP[f'E /kAHomP f'K]. have /kHom_to_AEnd[f eqf] : kHom K E (inv_map_hom iota f'). by rewrite inv_map_hom_kHom ?(subv_trans f'E) ?limgS ?subvf//; apply/kAHomP. have fE : (f @: E <= E)%VS. rewrite -(eq_in_limg eqf) -(limg_ker0 _ _ (AHom_lker0 iota)). by rewrite limg_inv_map_ahom//. exists f; rewrite ?inE ?kAut1E ?kAutE/= ?subfield_closed ?subvf ?andbT ?fE. apply/kAHomP => x xK; rewrite -eqf ?(subvP subKE)// !comp_lfunE. by rewrite f'K ?memv_img// lker0_lfunK. apply/eqP/gal_eqP => _/memv_imgP[x xE ->]; rewrite map_galE//. rewrite !galK ?memv_img// -eqf//= inv_map_homE//. apply: subv_trans (limgS _ (subvf E)); apply: subv_trans f'E. by do !apply: memv_img. Qed. Lemma reflexiveW T (r : rel T) : reflexive r -> forall x y, x = y -> r x y. Proof. by move=> ? ? ? ->. Qed. Lemma normalField_aimg (K : {subfield L}) : (K <= E)%VS -> normalField (iota @: K) (iota @: E) = normalField K E. Proof. move=> KE; have iotaKS : (iota @: K <= iota @: E)%VS by rewrite limgS. apply/splitting_normalField/splitting_normalField => //= -[p pK [rs peq Krs]]. have /polyOver_aimg [q qK pE] := pK. have /subset_limgP [rs' _ rsE] : {subset rs <= (iota @: E)%VS}. by rewrite -Krs; apply/seqv_sub_adjoin. exists q => //; exists rs'. by have := peq; rewrite pE rsE -map_prod_XsubC/= eqp_map. by do [rewrite rsE -aimg_adjoin_seq => /eqP; rewrite eq_limg_ker0// => /eqP] in Krs. exists (map_poly iota p) => //; first by rewrite mapf_polyOver. by apply/splittingFieldFor_aimg; exists rs. Qed. Lemma galois_aimg (K : {subfield L}) : galois (iota @: K) (iota @: E) = galois K E. Proof. rewrite /galois limg_ker0 ?AHom_lker0// separable_aimg. by case: (boolP (K <= E)%VS) => // /normalField_aimg->. Qed. End map_gal. Import AEnd_FinGroup. Section normalClosure. Variable (F0 : fieldType) (L : splittingFieldType F0). Implicit Types (K E F : {subfield L}). Lemma separable_aimgr E F s : s \in kAEndf E -> separable E (s @: F) = separable E F. Proof. rewrite inE => /kHom_kAut_sub/kAHomP s_id; rewrite -(separable_aimg _ _ s). suff /eq_in_limg->: {in E, s =1 \1%VF} by rewrite lim1g. by move=> x xE; rewrite lfunE/= s_id. Qed. Definition normalClosure (U V : {vspace L}) := (\big[@prodv _ _/1]_(s in kAEndf U) (s @: (U * V)))%VS. Definition normalClosure_is_aspace E F : is_aspace (normalClosure E F). Proof. by rewrite /normalClosure big_prodv_eq_aspace; case: (\big[_/_]_(_ in _) _). Qed. Canonical normalClosure_aspace E F := ASpace (normalClosure_is_aspace E F). Lemma prodv_sub_normalClosure E F : (E * F <= normalClosure E F)%VS. Proof. rewrite /normalClosure (bigD1 \1%AF) ?group1//= lim1g. by rewrite big_prodv_eq_aspace field_subvMr. Qed. Lemma normalClosureSl E F : (E <= normalClosure E F)%VS. Proof. by rewrite (subv_trans (field_subvMr _ _) (prodv_sub_normalClosure _ _)). Qed. Hint Resolve normalClosureSl : core. Lemma normalClosureSr E F : (F <= normalClosure E F)%VS. Proof. exact: subv_trans (field_subvMl _ _) (prodv_sub_normalClosure _ _). Qed. Hint Resolve normalClosureSr : core. Lemma normalClosure_normal E F : normalField E (normalClosure E F). Proof. apply/'forall_implyP => s s_end; apply/eqP. rewrite /normalClosure (big_morph _ (aimgM _) (aimg1 _)). under eq_bigr => s' do rewrite -limg_comp. under eq_bigr => s' do have -> : (s \o s')%VF = 'R%act s' s by []. have /(reindex_astabs 'R _) : s \in ('N(kAEndf E | 'R))%g by rewrite astabsR/=. by move/(_ _ _ _ (fun i => i @: (E * F))%AS); rewrite !big_prodv_eq_aspace => <-. Qed. Hint Resolve normalClosure_normal : core. Lemma normalClosure_separable E F : separable E F -> separable E (normalClosure E F). Proof. move=> sepEF; rewrite separable_big_prodv big_andE; apply/forall_inP => g ggal. by rewrite separable_aimgr// separable_prodv separable_refl. Qed. Lemma normalClosure_galois E F : separable E F -> galois E (normalClosure E F). Proof. move=> sepEF; rewrite /galois. by rewrite normalClosureSl normalClosure_separable// normalClosure_normal. Qed. Hint Resolve normalClosure_galois : core. Lemma normalClosureP E F K' : (E <= K')%VS -> (F <= K')%VS -> normalField E K' -> (normalClosure E F <= K')%VS. Proof. move=> EK' FK' /'forall_implyP/(_ _ _)/eqP/= sK'. apply/big_prod_subfieldP => /= u uEF; rewrite rpred_prod// => s s_end. by apply/subvP: (uEF s s_end); rewrite -(sK' _ s_end) limgS// prodv_sub. Qed. Lemma galoisClosureP E F K' : (F <= K')%VS -> galois E K' -> (normalClosure E F <= K')%VS. Proof. by move=> EK' /and3P[FK' _ ] /normalClosureP; apply. Qed. Lemma normalClosure_id E F : (E <= F)%VS -> normalField E F -> normalClosure E F = F. Proof. by move=> EF nEF; apply/eqP; rewrite eqEsubv/= normalClosureSr normalClosureP. Qed. Lemma galoisClosure_id E F : galois E F -> normalClosure E F = F. Proof. by move=> /and3P[EF _ /normalClosure_id->]. Qed. Definition solvable_ext (E F : {vspace L}) := separable E F && solvable 'Gal(normalClosure E F / E). Lemma char0_solvable_extE E F : has_char0 L -> solvable_ext E F = solvable 'Gal(normalClosure E F / E). Proof. by rewrite /solvable_ext => /char0_separable->. Qed. Lemma solvable_extP (E F : {subfield L}) : reflect (exists K : {subfield L}, [&& (F <= K)%VS, galois E K & solvable 'Gal(K / E)]) (solvable_ext E F). Proof. apply: (iffP idP) => [/andP[sepEF solEF]|[K /and3P[FK galEK solEK]]]. exists [aspace of normalClosure E F]. by rewrite normalClosure_galois ?normalClosureSr. have MsubK := galoisClosureP FK galEK; rewrite /solvable_ext. have sepEF : separable E F by case/and3P: galEK => [_ /separableSr->]. have /and3P [EsubM _ EnormM] := (normalClosure_galois sepEF). by rewrite -(isog_sol (normalField_isog galEK _ _)) ?EsubM ?quotient_sol ?andbT. Qed. Lemma solvable_ext_refl E : solvable_ext E E. Proof. by apply/solvable_extP; exists E; rewrite subvv galois_refl/= galvv solvable1. Qed. Hint Resolve solvable_ext_refl : core. Lemma sub_solvable_ext F K E : (E <= F)%VS -> solvable_ext K F -> solvable_ext K E. Proof. move=> EF /solvable_extP[M /and3P[Msuper galKM solKM]]. by apply/solvable_extP; exists M; rewrite (subv_trans EF) ?galKM. Qed. Lemma solvable_prodv (k E F : {subfield L}) : (k <= F)%VS -> solvable_ext k E -> solvable_ext F (E * F)%AS. Proof. move=> kF /andP[sepkE solkE]; apply/solvable_extP => //. exists ([aspace of normalClosure k E] * F)%AS. rewrite (@galois_prodvr _ _ k) ?normalClosure_galois//. rewrite ?prodvSl ?sub_normalClosure//=. rewrite (isog_sol (galois_isog (normalClosure_galois _) _))//. rewrite (solvableS _ solkE)// galS// subv_cap kF. by rewrite galois_subW ?normalClosure_galois. Qed. Import AEnd_FinGroup. Lemma solvable_ext_trans (F k E : {subfield L}) : (k <= F <= E)%VS -> solvable_ext k F -> solvable_ext F E -> solvable_ext k E. Proof. move=> /andP[kF FE] solkF solFE. move: (solkF) (solFE) => /andP[sepkF solmkF] /andP[sepFE solmFE]. have sepkE := separable_trans sepFE. have /solvable_extP [/= l /and3P[EKl galKl subl]] := solvable_prodv (normalClosureSr k F) solFE. apply/solvable_extP; exists [aspace of normalClosure k l] => /=. have galkK := normalClosure_galois sepkF. set K := normalClosure k F in galkK galKl subl EKl *. have /and3P [kK sepkK normkK] := galkK. have /and3P [Kl sepKl normKl] := galKl. have sepkl := separable_trans sepkK sepKl. have kl := subv_trans kK Kl. rewrite normalClosure_galois ?(subv_trans _ (normalClosureSr _ _))//=; last first. by rewrite (subv_trans _ EKl)//= field_subvMr. have KM : (K <= normalClosure k l)%VS := subv_trans Kl (normalClosureSr _ _). have kKM : (k <= K <= normalClosure k l)%VS by rewrite kK KM. rewrite (series_sol (normalField_normal _ normkK))//= -/K. rewrite (isog_sol (normalField_isog _ _ _)) ?normalClosure_galois//=. rewrite [X in _ && X]solmkF andbT /normalClosure. under eq_bigr do rewrite /= (prodv_idPr _)//. rewrite big_prodv_eq_aspace big_enum_val/=. have /'forall_implyP/(_ _ _)/eqP/= sK := galois_normalW galkK. have gKl (i : 'I_#|kAEndf k|) : galois K (enum_val i @: l)%AS. move: (enum_val _) (enum_valP i) => s s_end. have /splitting_galoisField[/= p [pK p_sep [rs p_eq <-]]] := galKl. apply/splitting_galoisField; exists (map_poly s p); split => //=. - by rewrite -(sK _ s_end) mapf_polyOver. - by rewrite separable_map. - rewrite aimg_adjoin_seq -{1}(sK _ s_end); exists (map s rs) => //. by rewrite -map_prod_XsubC eqp_map. rewrite -(injm_sol (gal_big_prodv_cast_inj gKl))//. rewrite (solvableS (img_gal_big_prodv_cast_sub _)) ?sol_setXn// => i /=. move: (enum_val _) (enum_valP i) => s s_end; rewrite -(sK _ s_end). by rewrite -img_map_gal/= morphim_sol. Qed. End normalClosure. Hint Resolve normalClosureSl : core. Hint Resolve normalClosureSr : core. Hint Resolve normalClosure_normal : core. Hint Resolve solvable_ext_refl : core. Lemma aimg_normalClosure (F0 : fieldType) (L L' : splittingFieldType F0) (iota : 'AHom(L, L')) (K E : {subfield L}) : (iota @: normalClosure K E)%VS = normalClosure (iota @: K) (iota @: E). Proof. set M' := normalClosure (iota @: _) _; have iK0 := AHom_lker0 iota. have M'sub : (M' <= iota @: normalClosure K E)%VS. by rewrite normalClosureP ?limgS//= normalField_aimg/=. apply/eqP; rewrite eqEsubv M'sub /M'. have /sub_aimgP[/= M ME] : (M' <= iota @: fullv)%VS. by apply: subv_trans M'sub _; rewrite limgS ?subvf. have KM : (K <= M)%VS by rewrite -(limg_ker0 _ _ iK0) ME/= normalClosureSl. rewrite -ME limgS// normalClosureP//. by rewrite -(limg_ker0 _ _ iK0) ME/= normalClosureSr. by rewrite -(normalField_aimg iota)// ME// normalClosure_normal. Qed. Lemma solvable_ext_aimg (F0 : fieldType) (L L' : splittingFieldType F0) (iota : 'AHom(L, L')) (E F : {subfield L}) : solvable_ext (iota @: E) (iota @: F) = solvable_ext E F. Proof. rewrite /solvable_ext separable_aimg; have [sepEF|]//= := boolP (separable _ _). by rewrite -aimg_normalClosure// -img_map_gal injm_sol ?map_gal_inj ?subsetT. Qed.