From mathcomp Require Import all_ssreflect all_fingroup all_algebra. From mathcomp Require Import all_solvable all_field. From Abel Require Import various. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GRing.Theory Order.TTheory Num.Theory. Local Open Scope ring_scope. Local Notation "p ^^ f" := (map_poly f p) (at level 30, f at level 30, format "p ^^ f"). Record algR := in_algR {algRval : algC; algRvalP : algRval \is Num.real}. Canonical algR_subType := [subType for algRval]. Definition algR_eqMixin := [eqMixin of algR by <:]. Canonical algR_eqType := EqType algR algR_eqMixin. Definition algR_choiceMixin := [choiceMixin of algR by <:]. Canonical algR_choiceType := ChoiceType algR algR_choiceMixin. Definition algR_countMixin := [countMixin of algR by <:]. Canonical algR_countType := CountType algR algR_countMixin. Definition algR_zmodMixin := [zmodMixin of algR by <:]. Canonical algR_zmodType := ZmodType algR algR_zmodMixin. Definition algR_ringMixin := [ringMixin of algR by <:]. Canonical algR_ringType := RingType algR algR_ringMixin. Definition algR_comRingMixin := [comRingMixin of algR by <:]. Canonical algR_comRingType := ComRingType algR algR_comRingMixin. Definition algR_unitRingMixin := [unitRingMixin of algR by <:]. Canonical algR_unitRingType := UnitRingType algR algR_unitRingMixin. Canonical algR_comUnitRingType := [comUnitRingType of algR]. Definition algR_idomainMixin := [idomainMixin of algR by <:]. Canonical algR_idomainType := IdomainType algR algR_idomainMixin. Definition algR_fieldMixin := [fieldMixin of algR by <:]. Canonical algR_fieldType := FieldType algR algR_fieldMixin. Definition algR_porderMixin := [porderMixin of algR by <:]. Canonical algR_porderType := POrderType ring_display algR algR_porderMixin. Lemma total_algR : totalPOrderMixin [porderType of algR]. Proof. by move=> x y; apply/real_leVge/valP/valP. Qed. Canonical algR_latticeType := LatticeType algR total_algR. Canonical algR_distrLatticeType := DistrLatticeType algR total_algR. Canonical algR_orderType := OrderType algR total_algR. Lemma algRval_is_rmorphism : rmorphism algRval. Proof. by []. Qed. Canonical algRval_additive := Additive algRval_is_rmorphism. Canonical algRval_rmorphism := RMorphism algRval_is_rmorphism. Definition algR_norm (x : algR) : algR := in_algR (normr_real (val x)). Lemma algR_ler_norm_add x y : algR_norm (x + y) <= (algR_norm x + algR_norm y). Proof. exact: ler_norm_add. Qed. Lemma algR_normr0_eq0 x : algR_norm x = 0 -> x = 0. Proof. by move=> /(congr1 val)/normr0_eq0 ?; apply/val_inj. Qed. Lemma algR_normrMn x n : algR_norm (x *+ n) = algR_norm x *+ n. Proof. by apply/val_inj; rewrite /= !rmorphMn/= normrMn. Qed. Lemma algR_normrN x : algR_norm (- x) = algR_norm x. Proof. by apply/val_inj; apply: normrN. Qed. Section Num. Definition algR_normedMixin := Num.NormedMixin algR_ler_norm_add algR_normr0_eq0 algR_normrMn algR_normrN. Section withz. Let z : algR := 0. Lemma algR_addr_gt0 (x y : algR) : z < x -> z < y -> z < x + y. Proof. exact: addr_gt0. Qed. Lemma algR_ger_leVge (x y : algR) : z <= x -> z <= y -> (x <= y) || (y <= x). Proof. exact: ger_leVge. Qed. Lemma algR_normrM : {morph algR_norm : x y / x * y}. Proof. by move=> *; apply/val_inj; apply: normrM. Qed. Lemma algR_ler_def (x y : algR) : (x <= y) = (algR_norm (y - x) == y - x). Proof. by apply: ler_def. Qed. End withz. Let algR_ring := (GRing.Ring.Pack (GRing.ComRing.base (GRing.ComUnitRing.base (GRing.IntegralDomain.base (GRing.IntegralDomain.class [idomainType of algR]))))). Definition algR_numMixin : @Num.mixin_of algR_ring _ _ := @Num.Mixin _ _ algR_normedMixin algR_addr_gt0 algR_ger_leVge algR_normrM algR_ler_def. Canonical algR_numDomainType := NumDomainType algR algR_numMixin. Canonical algR_normedZmodType := NormedZmodType algR algR algR_normedMixin. Canonical algR_numFieldType := [numFieldType of algR]. Canonical algR_realDomainType := [realDomainType of algR]. Canonical algR_realFieldType := [realFieldType of algR]. End Num. Definition algR_archiFieldMixin : Num.archimedean_axiom [numDomainType of algR]. Proof. move=> /= x; have /andP[/= _] := floorC_itv (valP `|x|). set n := floorC _; have [n_lt0|n_ge0] := ltP n 0. move=> /(@lt_le_trans _ _ _ _ 0); rewrite lerz0 lez_addr1. by move=> /(_ n_lt0); rewrite normr_lt0. move=> x_lt; exists (`|(n + 1)%R|%N); apply: lt_le_trans x_lt _. by rewrite /= rmorphMn/= pmulrn gez0_abs// addr_ge0. Qed. Canonical algR_archiFieldType := ArchiFieldType algR algR_archiFieldMixin. Definition algRpfactor (x : algC) : {poly algR} := if x \is Num.real =P true is ReflectT xR then 'X - (in_algR xR)%:P else 'X^2 - (in_algR (Creal_Re x) *+ 2) *: 'X + ((in_algR (normr_real x))^+2)%:P. Notation algCpfactor x := (algRpfactor x ^^ algRval). Lemma algRpfactorRE (x : algC) (xR : x \is Num.real) : algRpfactor x = 'X - (in_algR xR)%:P. Proof. rewrite /algRpfactor; case: eqP xR => //= p1 p2. by rewrite (bool_irrelevance p1 p2). Qed. Lemma algCpfactorRE (x : algC) : x \is Num.real -> algCpfactor x = 'X - x%:P. Proof. by move=> xR; rewrite algRpfactorRE map_polyXsubC. Qed. Lemma algRpfactorCE (x : algC) : x \isn't Num.real -> algRpfactor x = 'X^2 - (in_algR (Creal_Re x) *+ 2) *: 'X + ((in_algR (normr_real x))^+2)%:P. Proof. by rewrite /algRpfactor; case: eqP => // p; rewrite p. Qed. Lemma algCpfactorCE (x : algC) : x \isn't Num.real -> algCpfactor x = ('X - x%:P) * ('X - x^*%:P). Proof. move=> xNR; rewrite algRpfactorCE//=. rewrite rmorphD rmorphB/= !map_polyZ !map_polyXn/= map_polyX. rewrite (map_polyC [rmorphism of algRval])/=. rewrite mulrBl !mulrBr -!addrA; congr (_ + _). rewrite opprD addrA opprK -opprD -rmorphM/= -normCK; congr (- _ + _). rewrite mulrC !mul_polyC -scalerDl. rewrite [x in RHS]algCrect conjC_rect ?Creal_Re ?Creal_Im//. by rewrite addrACA addNr addr0. Qed. Lemma algCpfactorE x : algCpfactor x = ('X - x%:P) * ('X - x^*%:P) ^+ (x \isn't Num.real). Proof. by have [/algCpfactorRE|/algCpfactorCE] := boolP (_ \is _); rewrite ?mulr1. Qed. Lemma size_algCpfactor x : size (algCpfactor x) = (x \isn't Num.real).+2. Proof. have [xR|xNR] := boolP (_ \is _); first by rewrite algCpfactorRE// size_XsubC. by rewrite algCpfactorCE// size_mul ?size_XsubC ?polyXsubC_eq0. Qed. Lemma size_algRpfactor x : size (algRpfactor x) = (x \isn't Num.real).+2. Proof. by have := size_algCpfactor x; rewrite size_map_poly. Qed. Lemma algCpfactor_eq0 x : (algCpfactor x == 0) = false. Proof. by rewrite -size_poly_eq0 size_algCpfactor. Qed. Lemma algRpfactor_eq0 x : (algRpfactor x == 0) = false. Proof. by rewrite -size_poly_eq0 size_algRpfactor. Qed. Lemma algCpfactorCgt0 x y : x \isn't Num.real -> y \is Num.real -> (algCpfactor x).[y] > 0. Proof. move=> xNR yR; rewrite algCpfactorCE// hornerM !hornerXsubC. rewrite [x]algCrect conjC_rect ?Creal_Re ?Creal_Im// !opprD !addrA opprK. rewrite -subr_sqr exprMn sqrCi mulN1r opprK ltr_paddl//. - by rewrite real_exprn_even_ge0// ?rpredB// ?Creal_Re. by rewrite real_exprn_even_gt0 ?Creal_Im ?orTb//=; apply/eqP/Creal_ImP. Qed. Lemma algRpfactorR_mul_gt0 (x a b : algC) : x \is Num.real -> a \is Num.real -> b \is Num.real -> a <= b -> ((algCpfactor x).[a] * (algCpfactor x).[b] <= 0) = (a <= x <= b). Proof. move=> xR aR bR ab; rewrite !algCpfactorRE// !hornerXsubC. have [lt_xa|lt_ax|->]/= := real_ltgtP xR aR; last first. - by rewrite subrr mul0r lexx ab. - by rewrite nmulr_rle0 ?subr_lt0 ?subr_ge0. rewrite pmulr_rle0 ?subr_gt0// subr_le0. by apply: negbTE; rewrite -real_ltNge// (lt_le_trans lt_xa). Qed. Lemma monic_algCpfactor x : algCpfactor x \is monic. Proof. by rewrite algCpfactorE rpredM ?rpredX ?monicXsubC. Qed. Lemma monic_algRpfactor x : algRpfactor x \is monic. Proof. by have := monic_algCpfactor x; rewrite map_monic. Qed. Lemma poly_algR_pfactor (p : {poly algR}) : { r : seq algC | p ^^ algRval = val (lead_coef p) *: \prod_(z <- r) algCpfactor z }. Proof. wlog p_monic : p / p \is monic => [hwlog|]. have [->|pN0] := eqVneq p 0. by exists [::]; rewrite lead_coef0/= rmorph0 scale0r. have [|r] := hwlog ((lead_coef p)^-1 *: p). by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0//. rewrite !lead_coefZ mulVf ?lead_coef_eq0//= scale1r. rewrite map_polyZ/= => /(canRL (scalerKV _))->; first by exists r. by rewrite fmorph_eq0 lead_coef_eq0. suff: {r : seq algC | p ^^ algRval = \prod_(z <- r) algCpfactor z}. by move=> [r rP]; exists r; rewrite rP (monicP _)// scale1r. have [/= r pr] := closed_field_poly_normal (p ^^ algRval). rewrite (monicP _) ?monic_map ?scale1r// {p_monic} in pr *. have [n] := ubnP (size r). elim: n r => // n IHn [|x r]/= in p pr *. by exists [::]; rewrite pr !big_nil. rewrite ltnS => r_lt. have xJxr : x^* \in x :: r. rewrite -root_prod_XsubC -pr. have /eq_map_poly-> : algRval =1 conjC \o algRval. by move=> a /=; rewrite (CrealP (algRvalP _)). by rewrite map_poly_comp mapf_root pr root_prod_XsubC mem_head. have xJr : (x \isn't Num.real) ==> (x^* \in r) by rewrite implyNb CrealE. have pxdvdC : algCpfactor x %| p ^^ algRval. rewrite pr algCpfactorE big_cons/= dvdp_mul2l ?polyXsubC_eq0//. by case: (_ \is _) xJr; rewrite ?dvd1p// dvdp_XsubCl root_prod_XsubC. pose pr'x := p %/ algRpfactor x. have [||r'] := IHn (if x \is Num.real then r else rem x^* r) pr'x; last 2 first. - by case: (_ \is _) in xJr *; rewrite ?size_rem// (leq_ltn_trans (leq_pred _)). - move=> /eqP; rewrite map_divp -dvdp_eq_mul ?algCpfactor_eq0//= => /eqP->. by exists (x :: r'); rewrite big_cons mulrC. rewrite map_divp/= pr big_cons algCpfactorE/=. rewrite divp_pmul2l ?expf_neq0 ?polyXsubC_eq0//. case: (_ \is _) => /= in xJr *; first by rewrite divp1//. by rewrite (big_rem _ xJr)/= mulKp ?polyXsubC_eq0. Qed. Definition algR_rcfMixin : Num.real_closed_axiom [numDomainType of algR]. Proof. move=> p a b le_ab /andP[pa_le0 pb_ge0]/=. case: ltgtP pa_le0 => //= pa0 _; last first. by exists a; rewrite ?lexx// rootE pa0. case: ltgtP pb_ge0 => //= pb0 _; last first. by exists b; rewrite ?lexx ?andbT// rootE -pb0. have p_neq0 : p != 0 by apply: contraTneq pa0 => ->; rewrite horner0 ltxx. have {pa0 pb0} pab0 : p.[a] * p.[b] < 0 by rewrite pmulr_llt0. wlog p_monic : p p_neq0 pab0 / p \is monic => [hwlog|]. have [|||x axb] := hwlog ((lead_coef p)^-1 *: p). - by rewrite scaler_eq0 invr_eq0 lead_coef_eq0 (negPf p_neq0). - rewrite !hornerE/= -mulrA mulrACA -expr2 pmulr_rlt0//. by rewrite exprn_even_gt0//= invr_eq0 lead_coef_eq0. - by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0 ?eqxx. by rewrite rootZ ?invr_eq0 ?lead_coef_eq0//; exists x. have /= [rs prs] := poly_algR_pfactor p. rewrite (monicP _) ?monic_map// scale1r {p_monic} in prs. pose ab := [pred x | val a <= x <= val b]. have abR : {subset ab <= Num.real}. move=> x /andP[+ _]. by rewrite -subr_ge0 => /ger0_real; rewrite rpredBr// algRvalP. wlog : p pab0 {p_neq0 prs} / p ^^ algRval = \prod_(x <- rs | x \in ab) ('X - x%:P) => [hw|]. move: prs; rewrite -!rmorph_prod => /map_poly_inj. rewrite (bigID ab)/=; set q := (X in X * _); set u := (X in _ * X) => pqu. have [||] := hw q; last first. - by move=> x; exists x => //; rewrite pqu rootM q0. - by rewrite rmorph_prod/=; under eq_bigr do rewrite algCpfactorRE ?abR//. have := pab0; rewrite pqu !hornerM mulrACA [_ * _ * _ < 0]pmulr_llt0//. rewrite !horner_prod -big_split/= prodr_gt0// => x. have [xR|xNR] := boolP (x \is Num.real); last first. by rewrite ?ltEsub/= -!horner_map/= mulr_gt0 ?algCpfactorCgt0 ?algRvalP. apply: contraNT; rewrite -leNgt ?leEsub/= -!horner_map/=. by rewrite algRpfactorR_mul_gt0 ?algRvalP. rewrite -big_filter; have := filter_all ab rs. set rsab := filter _ _. have: all (mem Num.real) rsab. by apply/allP => x; rewrite mem_filter => /andP[/abR]. case: rsab => [_ _|x rsab]/=; rewrite (big_nil, big_cons). move=> pval1; move: pab0. have /map_poly_inj-> : p ^^ algRval = 1 ^^ algRval by rewrite rmorph1. by rewrite !hornerE ltr10. move=> /andP[xR rsabR] /andP[axb arsb] prsab. exists (in_algR xR) => //=. by rewrite -(mapf_root [rmorphism of algRval])//= prsab rootM root_XsubC eqxx. Qed. Canonical algR_rcfType := RcfType algR algR_rcfMixin.