(* Title: Binary Search Trees, Isar-Style Author: Viktor Kuncak, MIT CSAIL, November 2003 Maintainer: Larry Paulson License: LGPL *) section \Mostly Isar-style Reasoning for Binary Tree Operations\ theory BinaryTree_Map imports BinaryTree begin text \We prove correctness of map operations implemented using binary search trees from BinaryTree. This document is LGPL. Author: Viktor Kuncak, MIT CSAIL, November 2003\ (*============================================================*) section \Map implementation and an abstraction function\ (*============================================================*) type_synonym 'a tarray = "(index * 'a) Tree" definition valid_tmap :: "'a tarray => bool" where "valid_tmap t == sortedTree fst t" declare valid_tmap_def [simp] definition mapOf :: "'a tarray => index => 'a option" where \ \the abstraction function from trees to maps\ "mapOf t i == (case (tlookup fst i t) of None => None | Some ia => Some (snd ia))" (*============================================================*) section \Auxiliary Properties of our Implementation\ (*============================================================*) lemma mapOf_lookup1: "tlookup fst i t = None ==> mapOf t i = None" by (simp add: mapOf_def) lemma mapOf_lookup2: "tlookup fst i t = Some (j,a) ==> mapOf t i = Some a" by (simp add: mapOf_def) lemma assumes h: "mapOf t i = None" shows mapOf_lookup3: "tlookup fst i t = None" proof (cases "tlookup fst i t") case None from this show ?thesis by assumption next case (Some ia) note tsome = this from this have o1: "tlookup fst i t = Some (fst ia, snd ia)" by simp have "mapOf t i = Some (snd ia)" by (insert mapOf_lookup2 [of i t "fst ia" "snd ia"], simp add: o1) from this have "mapOf t i ~= None" by simp from this h show ?thesis by simp \ \contradiction\ qed lemma assumes v: "valid_tmap t" assumes h: "mapOf t i = Some a" shows mapOf_lookup4: "tlookup fst i t = Some (i,a)" proof (cases "tlookup fst i t") case None from this mapOf_lookup1 have "mapOf t i = None" by auto from this h show ?thesis by simp \ \contradiction\ next case (Some ia) note tsome = this have tlookup_some_inst: "sortedTree fst t & (tlookup fst i t = Some ia) --> ia : setOf t & fst ia = i" by (simp add: tlookup_some) from tlookup_some_inst tsome v have "ia : setOf t" by simp from tsome have "mapOf t i = Some (snd ia)" by (simp add: mapOf_def) from this h have o1: "snd ia = a" by simp from tlookup_some_inst tsome v have o2: "fst ia = i" by simp from o1 o2 have "ia = (i,a)" by auto from this tsome show "tlookup fst i t = Some (i, a)" by simp qed subsection \Lemmas \mapset_none\ and \mapset_some\ establish a relation between the set and map abstraction of the tree\ lemma assumes v: "valid_tmap t" shows mapset_none: "(mapOf t i = None) = (\a. (i,a) \ setOf t)" proof \ \==>\ assume mapNone: "mapOf t i = None" from v mapNone mapOf_lookup3 have lnone: "tlookup fst i t = None" by auto show "\a. (i,a) \ setOf t" proof fix a show "(i,a) ~: setOf t" proof assume iain: "(i,a) : setOf t" have tlookup_none_inst: "sortedTree fst t & (tlookup fst i t = None) --> (\x \ setOf t. fst x ~= i)" by (insert tlookup_none [of "fst" "t" "i"], assumption) from v lnone tlookup_none_inst have "\x \ setOf t. fst x ~= i" by simp from this iain have "fst (i,a) ~= i" by fastforce from this show False by simp qed qed \ \<==\ next assume h: "\a. (i,a) \ setOf t" show "mapOf t i = None" proof (cases "mapOf t i") case None then show ?thesis . next case (Some a) note mapsome = this from v mapsome have o1: "tlookup fst i t = Some (i,a)" by (simp add: mapOf_lookup4) (* moving mapOf_lookup4 to assumption does not work, although it uses no == !! *) from tlookup_some have tlookup_some_inst: "sortedTree fst t & tlookup fst i t = Some (i,a) --> (i,a) : setOf t & fst (i,a) = i" by (insert tlookup_some [of fst t i "(i,a)"], assumption) from v o1 this have "(i,a) : setOf t" by simp from this h show ?thesis by auto \ \contradiction\ qed qed lemma assumes v: "valid_tmap t" shows mapset_some: "(mapOf t i = Some a) = ((i,a) : setOf t)" proof \ \==>\ assume mapsome: "mapOf t i = Some a" from v mapsome have o1: "tlookup fst i t = Some (i,a)" by (simp add: mapOf_lookup4) from tlookup_some have tlookup_some_inst: "sortedTree fst t & tlookup fst i t = Some (i,a) --> (i,a) : setOf t & fst (i,a) = i" by (insert tlookup_some [of fst t i "(i,a)"], assumption) from v o1 this show "(i,a) : setOf t" by simp \ \<==\ next assume iain: "(i,a) : setOf t" from v iain tlookup_finds have "tlookup fst (fst (i,a)) t = Some (i,a)" by fastforce from this have "tlookup fst i t = Some (i,a)" by simp from this show "mapOf t i = Some a" by (simp add: mapOf_def) qed (*============================================================*) section \Empty Map\ (*============================================================*) lemma mnew_spec_valid: "valid_tmap Tip" by (simp add: mapOf_def) lemma mtip_spec_empty: "mapOf Tip k = None" by (simp add: mapOf_def) (*============================================================*) section \Map Update Operation\ (*============================================================*) definition mupdate :: "index => 'a => 'a tarray => 'a tarray" where "mupdate i a t == binsert fst (i,a) t" lemma assumes v: "valid_tmap t" shows mupdate_map: "mapOf (mupdate i a t) = (mapOf t)(i |-> a)" proof fix i2 let ?tr = "binsert fst (i,a) t" have upres: "mupdate i a t = ?tr" by (simp add: mupdate_def) from v binsert_set have setSpec: "setOf ?tr = setOf t - eqs fst (i,a) Un {(i,a)}" by fastforce from v binsert_sorted have vr: "valid_tmap ?tr" by fastforce show "mapOf (mupdate i a t) i2 = ((mapOf t)(i |-> a)) i2" proof (cases "i = i2") case True note i2ei = this from i2ei have rhs_res: "((mapOf t)(i |-> a)) i2 = Some a" by simp have lhs_res: "mapOf (mupdate i a t) i = Some a" proof - have will_find: "tlookup fst i ?tr = Some (i,a)" proof - from setSpec have kvin: "(i,a) : setOf ?tr" by simp have binsert_sorted_inst: "sortedTree fst t --> sortedTree fst ?tr" by (insert binsert_sorted [of "fst" "t" "(i,a)"], assumption) from v binsert_sorted_inst have rs: "sortedTree fst ?tr" by simp have tlookup_finds_inst: "sortedTree fst ?tr & (i,a) : setOf ?tr --> tlookup fst i ?tr = Some (i,a)" by (insert tlookup_finds [of "fst" "?tr" "(i,a)"], simp) from rs kvin tlookup_finds_inst show ?thesis by simp qed from upres will_find show ?thesis by (simp add: mapOf_def) qed from lhs_res rhs_res i2ei show ?thesis by simp next case False note i2nei = this from i2nei have rhs_res: "((mapOf t)(i |-> a)) i2 = mapOf t i2" by auto have lhs_res: "mapOf (mupdate i a t) i2 = mapOf t i2" proof (cases "mapOf t i2") case None from this have mapNone: "mapOf t i2 = None" by simp from v mapNone mapset_none have i2nin: "\a. (i2,a) \ setOf t" by fastforce have noneIn: "\b. (i2,b) \ setOf ?tr" proof fix b from v binsert_set have "setOf ?tr = setOf t - eqs fst (i,a) Un {(i,a)}" by fastforce from this i2nei i2nin show "(i2,b) ~: setOf ?tr" by fastforce qed have mapset_none_inst: "valid_tmap ?tr --> (mapOf ?tr i2 = None) = (\a. (i2, a) \ setOf ?tr)" by (insert mapset_none [of "?tr" i2], simp) from vr noneIn mapset_none_inst have "mapOf ?tr i2 = None" by fastforce from this upres mapNone show ?thesis by simp next case (Some z) from this have mapSome: "mapOf t i2 = Some z" by simp from v mapSome mapset_some have "(i2,z) : setOf t" by fastforce from this setSpec i2nei have "(i2,z) : setOf ?tr" by (simp add: eqs_def) from this vr mapset_some have "mapOf ?tr i2 = Some z" by fastforce from this upres mapSome show ?thesis by simp qed from lhs_res rhs_res show ?thesis by simp qed qed lemma assumes v: "valid_tmap t" shows mupdate_valid: "valid_tmap (mupdate i a t)" proof - let ?tr = "binsert fst (i,a) t" have upres: "mupdate i a t = ?tr" by (simp add: mupdate_def) from v binsert_sorted have vr: "valid_tmap ?tr" by fastforce from vr upres show ?thesis by simp qed (*============================================================*) section \Map Remove Operation\ (*============================================================*) definition mremove :: "index => 'a tarray => 'a tarray" where "mremove i t == remove fst (i, undefined) t" lemma assumes v: "valid_tmap t" shows mremove_valid: "valid_tmap (mremove i t)" proof (simp add: mremove_def) from v remove_sort show "sortedTree fst (remove fst (i, undefined) t)" by fastforce qed lemma assumes v: "valid_tmap t" shows mremove_map: "mapOf (mremove i t) i = None" proof (simp add: mremove_def) let ?tr = "remove fst (i, undefined) t" show "mapOf ?tr i = None" proof - from v remove_spec have remSet: "setOf ?tr = setOf t - eqs fst (i, undefined)" by fastforce have noneIn: "\a. (i,a) \ setOf ?tr" proof fix a from remSet show "(i,a) ~: setOf ?tr" by (simp add: eqs_def) qed from v remove_sort have vr: "valid_tmap ?tr" by fastforce have mapset_none_inst: "valid_tmap ?tr ==> (mapOf ?tr i = None) = (\a. (i,a) \ setOf ?tr)" by (insert mapset_none [of "?tr" "i"], simp) from vr this have "(mapOf ?tr i = None) = (\a. (i,a) \ setOf ?tr)" by fastforce from this noneIn show "mapOf ?tr i = None" by simp qed qed end