(* File: Bernoulli.thy Author: Lukas Bulwahn Author: Manuel Eberl *) section \Bernoulli numbers\ theory Bernoulli imports Complex_Main begin subsection \Preliminaries\ lemma power_numeral_reduce: "a ^ numeral n = a * a ^ pred_numeral n" by (simp only: numeral_eq_Suc power_Suc) lemma fact_diff_Suc: "n < Suc m \ fact (Suc m - n) = of_nat (Suc m - n) * fact (m - n)" by (subst fact_reduce) auto lemma of_nat_binomial_Suc: assumes "k \ n" shows "(of_nat (Suc n choose k) :: 'a :: field_char_0) = of_nat (Suc n) / of_nat (Suc n - k) * of_nat (n choose k)" using assms by (simp add: binomial_fact divide_simps fact_diff_Suc of_nat_diff del: of_nat_Suc) lemma integrals_eq: assumes "f 0 = g 0" assumes "\ x. ((\x. f x - g x) has_real_derivative 0) (at x)" shows "f x = g x" proof - show "f x = g x" proof (cases "x \ 0") case True from assms DERIV_const_ratio_const[OF this, of "\x. f x - g x" 0] show ?thesis by auto qed (simp add: assms) qed lemma sum_diff: "((\i\n::nat. f (i + 1) - f i)::'a::field) = f (n + 1) - f 0" by (induct n) (auto simp add: field_simps) lemma Rats_sum: "(\x. x \ A \ f x \ \) \ sum f A \ \" by (induction A rule: infinite_finite_induct) simp_all subsection \Bernoulli Numbers and Bernoulli Polynomials\ declare sum.cong [fundef_cong] fun bernoulli :: "nat \ real" where "bernoulli 0 = (1::real)" | "bernoulli (Suc n) = (-1 / (n + 2)) * (\k \ n. ((n + 2 choose k) * bernoulli k))" declare bernoulli.simps[simp del] lemmas bernoulli_0 [simp] = bernoulli.simps(1) lemmas bernoulli_Suc = bernoulli.simps(2) lemma bernoulli_1 [simp]: "bernoulli 1 = -1/2" by (simp add: bernoulli_Suc) lemma bernoulli_Suc_0 [simp]: "bernoulli (Suc 0) = -1/2" by (simp add: bernoulli_Suc) text \ The ``normal'' Bernoulli numbers are the negative Bernoulli numbers $B_n^{-}$ we just defined (so called because $B_1^{-} = -\frac{1}{2}$). There is also another convention, the positive Bernoulli numbers $B_n^{+}$, which differ from the negative ones only in that $B_1^{+} = \frac{1}{2}$. Both conventions have their justification, since a number of theorems are easier to state with one than the other. \ definition bernoulli' where "bernoulli' n = (if n = 1 then 1/2 else bernoulli n)" lemma bernoulli'_0 [simp]: "bernoulli' 0 = 1" by (simp add: bernoulli'_def) lemma bernoulli'_1 [simp]: "bernoulli' (Suc 0) = 1/2" by (simp add: bernoulli'_def) lemma bernoulli_conv_bernoulli': "n \ 1 \ bernoulli n = bernoulli' n" by (simp add: bernoulli'_def) lemma bernoulli'_conv_bernoulli: "n \ 1 \ bernoulli' n = bernoulli n" by (simp add: bernoulli'_def) lemma bernoulli_conv_bernoulli'_if: "n \ 1 \ bernoulli n = (if n = 1 then -1/2 else bernoulli' n)" by (simp add: bernoulli'_def) lemma bernoulli_in_Rats: "bernoulli n \ \" proof (induction n rule: less_induct) case (less n) thus ?case by (cases n) (auto simp: bernoulli_Suc intro!: Rats_sum Rats_divide) qed lemma bernoulli'_in_Rats: "bernoulli' n \ \" by (simp add: bernoulli'_def bernoulli_in_Rats) definition bernpoly :: "nat \ 'a \ 'a :: real_algebra_1" where "bernpoly n = (\x. \k \ n. of_nat (n choose k) * of_real (bernoulli k) * x ^ (n - k))" lemma bernpoly_altdef: "bernpoly n = (\x. \k\n. of_nat (n choose k) * of_real (bernoulli (n - k)) * x ^ k)" proof fix x :: 'a have "bernpoly n x = (\k\n. of_nat (n choose (n - k)) * of_real (bernoulli (n - k)) * x ^ (n - (n - k)))" unfolding bernpoly_def by (rule sum.reindex_bij_witness[of _ "\k. n - k" "\k. n - k"]) simp_all also have "\ = (\k\n. of_nat (n choose k) * of_real (bernoulli (n - k)) * x ^ k)" by (intro sum.cong refl) (simp_all add: binomial_symmetric [symmetric]) finally show "bernpoly n x = \" . qed lemma bernoulli_Suc': "bernoulli (Suc n) = -1/(real n + 2) * (\k\n. real (n + 2 choose (k + 2)) * bernoulli (n - k))" proof - have "bernoulli (Suc n) = - 1 / (real n + 2) * (\k\n. real (n + 2 choose k) * bernoulli k)" unfolding bernoulli.simps .. also have "(\k\n. real (n + 2 choose k) * bernoulli k) = (\k\n. real (n + 2 choose (n - k)) * bernoulli (n - k))" by (rule sum.reindex_bij_witness[of _ "\k. n - k" "\k. n - k"]) simp_all also have "\ = (\k\n. real (n + 2 choose (k + 2)) * bernoulli (n - k))" by (intro sum.cong refl, subst binomial_symmetric) simp_all finally show ?thesis . qed subsection \Basic Observations on Bernoulli Polynomials\ lemma bernpoly_0 [simp]: "bernpoly n 0 = (of_real (bernoulli n) :: 'a :: real_algebra_1)" proof (cases n) case 0 then show "bernpoly n 0 = of_real (bernoulli n)" unfolding bernpoly_def bernoulli.simps by auto next case (Suc n') have "(\k\n'. of_nat (Suc n' choose k) * of_real (bernoulli k) * 0 ^ (Suc n' - k)) = (0::'a)" proof (intro sum.neutral ballI) fix k assume "k \ {..n'}" thus "of_nat (Suc n' choose k) * of_real (bernoulli k) * (0::'a) ^ (Suc n' - k) = 0" by (cases "Suc n' - k") auto qed with Suc show ?thesis unfolding bernpoly_def by simp qed lemma continuous_on_bernpoly [continuous_intros]: "continuous_on A (bernpoly n :: 'a \ 'a :: real_normed_algebra_1)" unfolding bernpoly_def by (auto intro!: continuous_intros) lemma isCont_bernpoly [continuous_intros]: "isCont (bernpoly n :: 'a \ 'a :: real_normed_algebra_1) x" unfolding bernpoly_def by (auto intro!: continuous_intros) lemma has_field_derivative_bernpoly: "(bernpoly (Suc n) has_field_derivative (of_nat (n + 1) * bernpoly n x :: 'a :: real_normed_field)) (at x)" proof - have "(bernpoly (Suc n) has_field_derivative (\k\n. of_nat (Suc n - k) * x ^ (n - k) * (of_nat (Suc n choose k) * of_real (bernoulli k)))) (at x)" (is "(_ has_field_derivative ?D) _") unfolding bernpoly_def by (rule DERIV_cong) (fast intro!: derivative_intros, simp) also have "?D = of_nat (n + 1) * bernpoly n x" unfolding bernpoly_def by (subst sum_distrib_left, intro sum.cong refl, subst of_nat_binomial_Suc) simp_all ultimately show ?thesis by (auto simp del: of_nat_Suc One_nat_def) qed lemmas has_field_derivative_bernpoly' [derivative_intros] = DERIV_chain'[OF _ has_field_derivative_bernpoly] lemma sum_binomial_times_bernoulli: "(\k\n. ((Suc n) choose k) * bernoulli k) = (if n = 0 then 1 else 0)" proof (cases n) case (Suc m) then show ?thesis by (simp add: bernoulli_Suc) (simp add: field_simps add_2_eq_Suc'[symmetric] del: add_2_eq_Suc add_2_eq_Suc') qed simp_all lemma sum_binomial_times_bernoulli': "(\kkk\m. real (Suc m choose k) * bernoulli k)" unfolding Suc lessThan_Suc_atMost .. also have "\ = (if n = 1 then 1 else 0)" by (subst sum_binomial_times_bernoulli) (simp add: Suc) finally show ?thesis . qed simp_all lemma binomial_unroll: "n > 0 \ (n choose k) = (if k = 0 then 1 else (n - 1) choose (k - 1) + ((n - 1) choose k))" by (auto simp add: gr0_conv_Suc) lemma sum_unroll: "(\k\n::nat. f k) = (if n = 0 then f 0 else f n + (\k\n - 1. f k))" by (cases n) (simp_all add: add_ac) lemma bernoulli_unroll: "n > 0 \ bernoulli n = - 1 / (real n + 1) * (\k\n - 1. real (n + 1 choose k) * bernoulli k)" by (cases n) (simp add: bernoulli_Suc)+ lemmas bernoulli_unroll_all = binomial_unroll bernoulli_unroll sum_unroll bernpoly_def lemma bernpoly_1_1: "bernpoly 1 1 = of_real (1/2)" proof - have *: "(1 :: 'a) = of_real 1" by simp have "bernpoly 1 (1::'a) = 1 - of_real (1 / 2)" by (simp add: bernoulli_unroll_all) also have "\ = of_real (1 - 1 / 2)" by (simp only: * of_real_diff) also have "1 - 1 / 2 = (1 / 2 :: real)" by simp finally show ?thesis . qed subsection \Sum of Powers with Bernoulli Polynomials\ (* TODO: Generalisation not possible here because mean-value theorem is only available for reals *) lemma diff_bernpoly: fixes x :: real shows "bernpoly n (x + 1) - bernpoly n x = of_nat n * x ^ (n - 1)" proof (induct n arbitrary: x) case 0 show ?case unfolding bernpoly_def by auto next case (Suc n) have "bernpoly (Suc n) (0 + 1) - bernpoly (Suc n) (0 :: real) = (\k\n. of_real (real (Suc n choose k) * bernoulli k))" unfolding bernpoly_0 unfolding bernpoly_def by simp also have "\ = of_nat (Suc n) * 0 ^ n" by (simp only: of_real_sum [symmetric] sum_binomial_times_bernoulli) simp finally have const: "bernpoly (Suc n) (0 + 1) - bernpoly (Suc n) 0 = \" by simp have hyps': "of_nat (Suc n) * bernpoly n (x + 1) - of_nat (Suc n) * bernpoly n x = of_nat n * of_nat (Suc n) * x ^ (n - Suc 0)" for x :: real unfolding right_diff_distrib[symmetric] by (subst Suc) (simp_all add: algebra_simps) have "((\x. bernpoly (Suc n) (x + 1) - bernpoly (Suc n) x - of_nat (Suc n) * x ^ n) has_field_derivative 0) (at x)" for x :: real by (rule derivative_eq_intros refl)+ (insert hyps'[of x], simp add: algebra_simps) from integrals_eq[OF const this] show ?case by simp qed lemma bernpoly_of_real: "bernpoly n (of_real x) = of_real (bernpoly n x)" by (simp add: bernpoly_def) lemma bernpoly_1: assumes "n \ 1" shows "bernpoly n 1 = of_real (bernoulli n)" proof - have "bernpoly n 1 = bernoulli n" proof (cases "n \ 2") case False with assms have "n = 0" by auto thus ?thesis by (simp add: bernpoly_def) next case True with diff_bernpoly[of n 0] show ?thesis by (simp add: power_0_left bernpoly_0) qed hence "bernpoly n (of_real 1) = of_real (bernoulli n)" by (simp only: bernpoly_of_real) thus ?thesis by simp qed lemma bernpoly_1': "bernpoly n 1 = of_real (bernoulli' n)" using bernpoly_1_1 [where ?'a = 'a] by (cases "n = 1") (simp_all add: bernpoly_1 bernoulli'_def) theorem sum_of_powers: "(\k\n::nat. (real k) ^ m) = (bernpoly (Suc m) (n + 1) - bernpoly (Suc m) 0) / (m + 1)" proof - from diff_bernpoly[of "Suc m", simplified] have "(m + (1::real)) * (\k\n. (real k) ^ m) = (\k\n. bernpoly (Suc m) (real k + 1) - bernpoly (Suc m) (real k))" by (auto simp add: sum_distrib_left intro!: sum.cong) also have "... = (\k\n. bernpoly (Suc m) (real (k + 1)) - bernpoly (Suc m) (real k))" by (simp add: add_ac) also have "... = bernpoly (Suc m) (n + 1) - bernpoly (Suc m) 0" by (simp only: sum_diff[where f="\k. bernpoly (Suc m) (real k)"]) simp finally show ?thesis by (auto simp add: field_simps intro!: eq_divide_imp) qed lemma sum_of_powers_nat_aux: assumes "real a = b / c" "real b' = b" "real c' = c" shows "a = b' div c'" proof (cases "c = 0") case False with assms have "real (a * c') = real b'" by (simp add: field_simps) hence "b' = a * c'" by (subst (asm) of_nat_eq_iff) simp with False assms show ?thesis by simp qed (insert assms, simp_all) subsection \Instances for Square And Cubic Numbers\ theorem sum_of_squares: "real (\k\n::nat. k ^ 2) = real (2 * n ^ 3 + 3 * n ^ 2 + n) / 6" by (simp only: of_nat_sum of_nat_power sum_of_powers) (simp add: bernoulli_unroll_all field_simps power2_eq_square power_numeral_reduce) corollary sum_of_squares_nat: "(\k\n::nat. k ^ 2) = (2 * n ^ 3 + 3 * n ^ 2 + n) div 6" by (rule sum_of_powers_nat_aux[OF sum_of_squares]) simp_all theorem sum_of_cubes: "real (\k\n::nat. k ^ 3) = real (n ^ 2 + n) ^ 2 / 4" by (simp only: of_nat_sum of_nat_power sum_of_powers) (simp add: bernoulli_unroll_all field_simps power2_eq_square power_numeral_reduce) corollary sum_of_cubes_nat: "(\k\n::nat. k ^ 3) = (n ^ 2 + n) ^ 2 div 4" by (rule sum_of_powers_nat_aux[OF sum_of_cubes]) simp_all end