(*<*) \\ ******************************************************************** * Project : AGM Theory * Version : 1.0 * * Authors : Valentin Fouillard, Safouan Taha, Frederic Boulanger and Nicolas Sabouret * * This file : AGM revision * * Copyright (c) 2021 Université Paris Saclay, France * ******************************************************************************\ theory AGM_Revision imports AGM_Contraction begin (*>*) section \Revisions\ text \The third operator of belief change introduce by the AGM framework is the revision. In revision a sentence @{term \\\} is added to the belief set @{term \K\} in such a way that other sentences of @{term \K\} are removed if needed so that @{term \K\} is consistent\ subsection \AGM revision postulates\ text \The revision operator is denoted by the symbol @{text \\<^bold>*\} and respect the following conditions : \<^item> @{text \revis_closure\} : a belief set @{term \K\} revised by @{term \\\} should be logically closed \<^item> @{text \revis_inclusion\} : a belief set @{term \K\} revised by @{term \\\} should be a subset of @{term \K\} expanded by @{term \\\} \<^item> @{text \revis_vacuity\} : if @{text \\\\} is not in @{term \K\} then the revision of @{term \K\} by @{term \\\} is equivalent of the expansion of @{term \K\} by @{term \\\} \<^item> @{text \revis_success\} : a belief set @{term \K\} revised by @{term \\\} should contain @{term \\\} \<^item> @{text \revis_extensionality\} : Extensionality guarantees that the logic of contraction is extensional in the sense of allowing logically equivalent sentences to be freely substituted for each other \<^item> @{text \revis_consistency\} : a belief set @{term \K\} revised by @{term \\\} is consistent if @{term \\\} is consistent\ locale AGM_Revision = Supraclassical_logic + fixes revision:: \'a set \ 'a \ 'a set\ (infix \\<^bold>*\ 55) assumes revis_closure: \K = Cn(A) \ K \<^bold>* \ = Cn(K \<^bold>* \)\ and revis_inclusion: \K = Cn(A) \ K \<^bold>* \ \ K \ \\ and revis_vacuity: \K = Cn(A) \ .\ \ \ K \ K \ \ \ K \<^bold>* \\ and revis_success: \K = Cn(A) \ \ \ K \<^bold>* \\ and revis_extensionality: \K = Cn(A) \ Cn({\}) = Cn({\}) \ K \<^bold>* \ = K \<^bold>* \\ and revis_consistency: \K = Cn(A) \ .\ \ \ Cn({}) \ \ \ K \<^bold>* \\ text\A full revision is defined by two more postulates : \<^item> @{text \revis_superexpansion\} : An element of @{text \ K \<^bold>* (\ .\. \)\} is also an element of @{term \K\} revised by @{term \\\} and expanded by @{term \\\} \<^item> @{text \revis_subexpansion\} : An element of @{text \(K \<^bold>* \) \ \\} is also an element of @{term \K\} revised by @{text \\ .\. \\} if @{text \(K \<^bold>* \)\} do not imply @{text \\ \\} \ locale AGM_FullRevision = AGM_Revision + assumes revis_superexpansion: \K = Cn(A) \ K \<^bold>* (\ .\. \) \ (K \<^bold>* \) \ \\ and revis_subexpansion: \K = Cn(A) \ .\ \ \ (K \<^bold>* \) \ (K \<^bold>* \) \ \ \ K \<^bold>* (\ .\. \)\ begin \ \important lemmas/corollaries that can replace the previous assumptions\ corollary revis_superexpansion_ext : \K = Cn(A) \ (K \<^bold>* \) \ (K \<^bold>* \) \ (K \<^bold>* (\ .\. \))\ proof(intro subsetI, elim IntE) fix \ assume a:\K = Cn(A)\ and b:\\ \ (K \<^bold>* \)\ and c:\\ \ (K \<^bold>* \)\ have \ Cn({(\' .\. \') .\. \'}) = Cn({\'})\ for \' \' using conj_superexpansion2 by (simp add: Cn_same) hence d:\K \<^bold>* \' \ (K \<^bold>* (\' .\. \')) \ \'\ for \' \' using revis_superexpansion[OF a, of \\' .\. \'\ \'] revis_extensionality a by metis hence \\ .\. \ \ (K \<^bold>* (\ .\. \))\ and \\ .\. \ \ (K \<^bold>* (\ .\. \))\ using d[of \ \] d[of \ \] revis_extensionality[OF a disj_com_Cn, of \ \] using imp_PL a b c expansion_def revis_closure by fastforce+ then show c:\\ \ (K \<^bold>* (\ .\. \))\ using disjE_PL a revis_closure revis_success by fastforce qed end subsection \Relation of AGM revision and AGM contraction \ text\The AGM contraction of @{term \K\} by @{term \\\} can be defined as the AGM revision of @{term \K\} by @{text \\\\} intersect with @{term \K\} (to remove @{text \\\\} from K revised). This definition is known as Harper identity @{cite "Harper1976"}\ sublocale AGM_Revision \ AGM_Contraction where contraction = \\K \. K \ (K \<^bold>* .\ \)\ proof(unfold_locales, goal_cases) case closure:(1 K A \) then show ?case by (metis Cn_inter revis_closure) next case inclusion:(2 K A \) then show ?case by blast next case vacuity:(3 K A \) hence \.\ (.\ \) \ K\ using absurd_PL infer_def by blast hence \K \ (K \<^bold>* .\ \)\ using revis_vacuity[where \=\.\ \\] expansion_def inclusion_L vacuity(1) by fastforce then show ?case by fast next case success:(4 K A \) hence \.\ (.\ \) \ Cn({})\ using infer_def notnot_PL by blast hence a:\\ \ K \<^bold>* (.\ \)\ by (simp add: revis_consistency success(1)) have \.\ \ \ K \<^bold>* (.\ \)\ by (simp add: revis_success success(1)) with a have \\ \ K \<^bold>* (.\ \)\ using infer_def non_consistency revis_closure success(1) by blast then show ?case by simp next case recovery:(5 K A \) show ?case proof fix \ assume a:\\ \ K\ hence b:\\ .\. \ \ K\ using impI2 recovery by auto have \.\ \ .\. .\ \ \ K \<^bold>* .\ \\ using impI2 recovery revis_closure revis_success by fastforce hence \\ .\. \ \ K \<^bold>* .\ \\ using imp_contrapos recovery revis_closure by fastforce with b show \\ \ Cn (K \ (K \<^bold>* .\ \) \ {\})\ by (meson Int_iff Supraclassical_logic.imp_PL Supraclassical_logic_axioms inclusion_L subsetD) qed next case extensionality:(6 K A \ \) hence \Cn({.\ \}) = Cn({.\ \})\ using equiv_negation[of \{}\ \ \] valid_Cn_equiv valid_def by auto hence \(K \<^bold>* .\ \) = (K \<^bold>* .\ \)\ using extensionality(1) revis_extensionality by blast then show ?case by simp qed locale AGMC_S = AGM_Contraction + Supraclassical_logic text\The AGM revision of @{term \K\} by @{term \\\} can be defined as the AGM contraction of @{term \K\} by @{text \\\\} followed by an expansion by @{term \\\}. This definition is known as Levi identity @{cite "Levi1977SubjunctivesDA"}.\ sublocale AGMC_S \ AGM_Revision where revision = \\K \. (K \
.\ \) \ \\ proof(unfold_locales, goal_cases) case closure:(1 K A \) then show ?case by (simp add: expansion_def idempotency_L) next case inclusion:(2 K A \) have "K \
.\ \ \ K \ {\}" using contract_inclusion inclusion by auto then show ?case by (simp add: expansion_def monotonicity_L) next case vacuity:(3 K A \) then show ?case by (simp add: contract_vacuity expansion_def) next case success:(4 K A \) then show ?case using assumption_L expansion_def by auto next case extensionality:(5 K A \ \) hence \Cn({.\ \}) = Cn({.\ \})\ using equiv_negation[of \{}\ \ \] valid_Cn_equiv valid_def by auto hence \(K \
.\ \) = (K \
.\ \)\ using contract_extensionality extensionality(1) by blast then show ?case by (metis Cn_union expansion_def extensionality(2)) next case consistency:(6 K A \) then show ?case by (metis contract_closure contract_success expansion_def infer_def not_PL) qed text\The relationship between AGM full revision and AGM full contraction is the same as the relation between AGM revison and AGM contraction\ sublocale AGM_FullRevision \ AGM_FullContraction where contraction = \\K \. K \ (K \<^bold>* .\ \)\ proof(unfold_locales, goal_cases) case conj_overlap:(1 K A \ \) have a:\Cn({.\ (\ .\. \)}) = Cn({(.\ \) .\. (.\ \)})\ using Cn_same morgan by simp show ?case (is ?A) using revis_superexpansion_ext[OF conj_overlap(1), of \.\ \\ \.\ \\] revis_extensionality[OF conj_overlap(1) a] by auto next case conj_inclusion:(2 K A \ \) have a:\Cn({.\ (\ .\. \) .\. .\ \}) = Cn({.\ \})\ using conj_superexpansion1 by (simp add: Cn_same) from conj_inclusion show ?case proof(cases \\ \ K\) case True hence b:\.\ (.\ \) \ K \<^bold>* .\ (\ .\. \)\ using absurd_PL conj_inclusion revis_closure by fastforce show ?thesis using revis_subexpansion[OF conj_inclusion(1) b] revis_extensionality[OF conj_inclusion(1) a] expansion_def inclusion_L by fastforce next case False then show ?thesis by (simp add: conj_inclusion(1) contract_vacuity) qed qed locale AGMFC_S = AGM_FullContraction + AGMC_S sublocale AGMFC_S \ AGM_FullRevision where revision = \\K \. (K \
.\ \) \ \\ proof(unfold_locales, safe, goal_cases) case super:(1 K A \ \ \) hence a:\(\ .\. \) .\. \ \ Cn(Cn(A) \
.\ (\ .\. \))\ using Supraclassical_logic.imp_PL Supraclassical_logic_axioms expansion_def by fastforce have b:\(\ .\. \) .\. \ \ Cn({.\ (\ .\. \)})\ by (meson Supraclassical_logic.imp_recovery0 Supraclassical_logic.valid_disj_PL Supraclassical_logic_axioms) have c:\(\ .\. \) .\. \ \ Cn(A) \
(.\ (\ .\. \) .\. .\ \)\ using contract_conj_overlap_variant[of \Cn(A)\ A \.\ (\ .\. \)\ \.\ \\] a b using AGM_Contraction.contract_closure AGM_FullContraction_axioms AGM_FullContraction_def by fastforce have d:\Cn({.\ (\ .\. \) .\. .\ \}) = Cn({.\ \})\ using conj_superexpansion1 by (simp add: Cn_same) hence e:\(\ .\. \) .\. \ \ Cn(A) \
.\ \\ using AGM_Contraction.contract_extensionality[OF _ _ d] c AGM_FullContraction_axioms AGM_FullContraction_def by fastforce hence f:\\ .\. (\ .\. \) \ Cn(A) \
.\ \\ using conj_imp AGM_Contraction.contract_closure AGM_FullContraction_axioms AGM_FullContraction_def conj_imp by fastforce then show ?case by (metis assumption_L expansion_def imp_PL infer_def) next case sub:(2 K A \ \ \) hence a:\\ .\. (\ .\. \) \ Cn(A) \
.\ \\ by (metis AGMC_S.axioms(1) AGMC_S_axioms AGM_Contraction.contract_closure expansion_def impI_PL infer_def revis_closure) have b:\Cn({.\ (\ .\. \) .\. .\ \}) = Cn({.\ \})\ using conj_superexpansion1 by (simp add: Cn_same) have c:\.\ (\ .\. \) \ Cn A \
(.\ \)\ using sub(1) by (metis assumption_L conj_imp expansion_def imp_PL infer_def not_PL) have c:\Cn(A) \
.\ \ \ Cn(A) \
(.\ (\ .\. \))\ using contract_conj_inclusion[of \Cn(A)\ A \.\ (\ .\. \)\ \.\ \\] by (metis AGM_Contraction.contract_extensionality AGM_FullContraction.axioms(1) AGM_FullContraction_axioms b c) then show ?case by (metis a assumption_L conj_imp expansion_def imp_PL in_mono infer_def) qed end