theory BTree_ImpSplit imports BTree_ImpSet BTree_Split Imperative_Loops begin section "Imperative split operations" text "So far, we have only given a functional specification of a possible split. We will now provide imperative split functions that refine the functional specification. However, rather than tracing the execution of the abstract specification, the imperative versions are implemented using while-loops." subsection "Linear split" text "The linear split is the most simple split function for binary trees. It serves a good example on how to use while-loops in Imperative/HOL and how to prove Hoare-Triples about its application using loop invariants." definition lin_split :: "('a::heap \ 'b::{heap,linorder}) pfarray \ 'b \ nat Heap" where "lin_split \ \ (a,n) p. do { i \ heap_WHILET (\i. if i Array.nth a i; return (si. return (i+1)) 0; return i }" lemma lin_split_rule: " < is_pfa c xs (a,n)> lin_split (a,n) p <\i. is_pfa c xs (a,n) * \(i\n \ (\j (i snd (xs!i)\p))>\<^sub>t" unfolding lin_split_def supply R = heap_WHILET_rule''[where R = "measure (\i. n - i)" and I = "\i. is_pfa c xs (a,n) * \(i\n \ (\j 'b \ nat Heap" where "bin'_split \ \(a,n) p. do { (low',high') \ heap_WHILET (\(low,high). return (low < high)) (\(low,high). let mid = ((low + high) div 2) in do { s \ Array.nth a mid; if p < s then return (low, mid) else if p > s then return (mid+1, high) else return (mid,mid) }) (0::nat,n); return low' }" thm sorted_wrt_nth_less (* alternative: replace (\j 0 \ xs!(l-1) < p)*) lemma bin'_split_rule: " sorted_less xs \ < is_pfa c xs (a,n)> bin'_split (a,n) p <\l. is_pfa c xs (a,n) * \(l \ n \ (\j (l xs!l\p)) >\<^sub>t" unfolding bin'_split_def supply R = heap_WHILET_rule''[where R = "measure (\(l,h). h-l)" and I = "\(l,h). is_pfa c xs (a,n) * \(l\h \ h \ n \ (\j (h xs!h\p))" and b = "\(l,h). l length l'a" assume a: "l'a ! ((aa + n) div 2) < p" moreover assume "aa < n" ultimately have b: "((aa+n)div 2) < n" by linarith then have "(take n l'a) ! ((aa + n) div 2) < p" using a by auto moreover assume "sorted_less (take n l'a)" ultimately have "\j. j < (aa+n)div 2 \ (take n l'a) ! j < (take n l'a) ! ((aa + n) div 2)" using sorted_wrt_nth_less[where ?P="(<)" and xs="(take n l'a)" and ?j="((aa + n) div 2)"] a b "0" by auto moreover fix j assume "j < (aa+n) div 2" ultimately show "l'a ! j < p" using "0" b using \take n l'a ! ((aa + n) div 2) < p\ dual_order.strict_trans by auto qed subgoal for l' aa b l'a aaa ba j proof - assume t0: "n \ length l'a" assume t1: "aa < b" assume a: "l'a ! ((aa + b) div 2) < p" moreover assume "b \ n" ultimately have b: "((aa+b)div 2) < n" using t1 by linarith then have "(take n l'a) ! ((aa + b) div 2) < p" using a by auto moreover assume "sorted_less (take n l'a)" ultimately have "\j. j < (aa+b)div 2 \ (take n l'a) ! j < (take n l'a) ! ((aa + b) div 2)" using sorted_wrt_nth_less[where ?P="(<)" and xs="(take n l'a)" and ?j="((aa + b) div 2)"] a b t0 by auto moreover fix j assume "j < (aa+b) div 2" ultimately show "l'a ! j < p" using t0 b using \take n l'a ! ((aa + b) div 2) < p\ dual_order.strict_trans by auto qed apply sep_auto apply (metis le_less nth_take) apply (metis le_less nth_take) apply sep_auto subgoal for l' aa l'a aaa ba j proof - assume t0: "aa < n" assume t1: " n \ length l'a" assume t4: "sorted_less (take n l'a)" assume t5: "j < (aa + n) div 2" have "(aa+n) div 2 < n" using t0 by linarith then have "(take n l'a) ! j < (take n l'a) ! ((aa + n) div 2)" using t0 sorted_wrt_nth_less[where xs="take n l'a" and ?j="((aa + n) div 2)"] t1 t4 t5 by auto then show ?thesis using \(aa + n) div 2 < n\ t5 by auto qed subgoal for l' aa b l'a aaa ba j proof - assume t0: "aa < b" assume t1: " n \ length l'a" assume t3: "b \ n" assume t4: "sorted_less (take n l'a)" assume t5: "j < (aa + b) div 2" have "(aa+b) div 2 < n" using t3 t0 by linarith then have "(take n l'a) ! j < (take n l'a) ! ((aa + b) div 2)" using t0 sorted_wrt_nth_less[where xs="take n l'a" and ?j="((aa + b) div 2)"] t1 t4 t5 by auto then show ?thesis using \(aa + b) div 2 < n\ t5 by auto qed apply (metis nth_take order_mono_setup.refl) apply sep_auto apply (sep_auto simp add: is_pfa_def) done text "Then, using the same loop invariant, a binary split for B-tree-like arrays is derived in a straightforward manner." definition bin_split :: "('a::heap \ 'b::{heap,linorder}) pfarray \ 'b \ nat Heap" where "bin_split \ \(a,n) p. do { (low',high') \ heap_WHILET (\(low,high). return (low < high)) (\(low,high). let mid = ((low + high) div 2) in do { (_,s) \ Array.nth a mid; if p < s then return (low, mid) else if p > s then return (mid+1, high) else return (mid,mid) }) (0::nat,n); return low' }" thm nth_take lemma nth_take_eq: "take n ls = take n ls' \ i < n \ ls!i = ls'!i" by (metis nth_take) lemma map_snd_sorted_less: "\sorted_less (map snd xs); i < j; j < length xs\ \ snd (xs ! i) < snd (xs ! j)" by (metis (mono_tags, opaque_lifting) length_map less_trans nth_map sorted_wrt_iff_nth_less) lemma map_snd_sorted_lesseq: "\sorted_less (map snd xs); i \ j; j < length xs\ \ snd (xs ! i) \ snd (xs ! j)" by (metis eq_iff less_imp_le map_snd_sorted_less order.not_eq_order_implies_strict) lemma bin_split_rule: " sorted_less (map snd xs) \ < is_pfa c xs (a,n)> bin_split (a,n) p <\l. is_pfa c xs (a,n) * \(l \ n \ (\j (l snd(xs!l)\p)) >\<^sub>t" (* this works in principle, as demonstrated above *) unfolding bin_split_def supply R = heap_WHILET_rule''[where R = "measure (\(l,h). h-l)" and I = "\(l,h). is_pfa c xs (a,n) * \(l\h \ h \ n \ (\j (h snd (xs!h)\p))" and b = "\(l,h). l(_,s). s(_,s). sAny function that yields the heap rule we have obtained for bin\_split and lin\_split also refines this abstract split.\ locale imp_split_smeq = fixes split_fun :: "('a::{heap,default,linorder} btnode ref option \ 'a) array \ nat \ 'a \ nat Heap" assumes split_rule: "sorted_less (separators xs) \ split_fun (a, n) (p::'a) <\r. is_pfa c xs (a, n) * \ (r \ n \ (\j (r < n \ p \ snd (xs ! r)))>\<^sub>t" begin lemma abs_split_full: "\(_,s) \ set xs. s < p \ abs_split xs p = (xs,[])" by (simp add: abs_split_def) lemma abs_split_split: assumes "n < length xs" and "(\(_,s) \ set (take n xs). s < p)" and " (case (xs!n) of (_,s) \ \(s < p))" shows "abs_split xs p = (take n xs, drop n xs)" using assms apply (auto simp add: abs_split_def) apply (metis (mono_tags, lifting) id_take_nth_drop old.prod.case takeWhile_eq_all_conv takeWhile_tail) by (metis (no_types, lifting) Cons_nth_drop_Suc case_prod_conv dropWhile.simps(2) dropWhile_append2 id_take_nth_drop) lemma split_rule_abs_split: shows "sorted_less (separators ts) \ < is_pfa c tsi (a,n) * list_assn (A \\<^sub>a id_assn) ts tsi> split_fun (a,n) p <\i. is_pfa c tsi (a,n) * list_assn (A \\<^sub>a id_assn) ts tsi * \(split_relation ts (abs_split ts p) i)>\<^sub>t" apply(rule hoare_triple_preI) apply (sep_auto heap: split_rule dest!: mod_starD id_assn_list simp add: list_assn_prod_map split_ismeq) apply(auto simp add: is_pfa_def) proof - fix h l' assume heap_init: "h \ a \\<^sub>a l'" "map snd ts = (map snd (take n l'))" "n \ length l'" show full_thm: "\j split_relation ts (abs_split ts p) n" proof - assume sm_list: "\jj < length (map snd (take n l')). ((map snd (take n l'))!j) < p" by simp then have "\j(_,s) \ set ts. s < p" by (metis case_prod_unfold in_set_conv_nth length_map nth_map) then have "abs_split ts p = (ts, [])" using abs_split_full[of ts p] by simp then show "split_relation ts (abs_split ts p) n" using split_relation_length by (metis heap_init(2) heap_init(3) length_map length_take min.absorb2) qed then show "\j p \ snd (take n l' ! n) \ split_relation ts (abs_split ts p) n" by simp show part_thm: "\x. x < n \ \j p \ snd (l' ! x) \ split_relation ts (abs_split ts p) x" proof - fix x assume x_sm_len: "x < n" moreover assume sm_list: "\jjj(_,x) \ set (take x ts). x < p" by (auto simp add: in_set_conv_nth min.absorb2)+ moreover assume "p \ snd (l' ! x)" then have "case l'!x of (_,s) \ \(s < p)" by (simp add: case_prod_unfold) then have "case ts!x of (_,s) \ \(s < p)" using heap_init x_sm_len x_sm_len_ts by (metis (mono_tags, lifting) case_prod_unfold length_map length_take min.absorb2 nth_take snd_map_help(2)) ultimately have "abs_split ts p = (take x ts, drop x ts)" using x_sm_len_ts abs_split_split[of x ts p] heap_init by (metis length_map length_take min.absorb2) then show "split_relation ts (abs_split ts p) x" using x_sm_len_ts by (metis append_take_drop_id heap_init(2) heap_init(3) length_map length_take less_imp_le_nat min.absorb2 split_relation_alt) qed qed sublocale imp_split abs_split split_fun apply(unfold_locales) apply(sep_auto heap: split_rule_abs_split) done end subsection "Obtaining executable code" text "In order to obtain fully defined functions, we need to plug our split function implementations into the locales we introduced previously." interpretation btree_imp_linear_split: imp_split_smeq lin_split apply unfold_locales apply(sep_auto heap: lin_split_rule) done text "Obtaining actual code turns out to be slightly more difficult due to the use of locales. However, we successfully obtain the B-tree insertion and membership query with binary search splitting." global_interpretation btree_imp_binary_split: imp_split_smeq bin_split defines btree_isin = btree_imp_binary_split.isin and btree_ins = btree_imp_binary_split.ins and btree_insert = btree_imp_binary_split.insert and btree_del = btree_imp_binary_split.del and btree_split_max = btree_imp_binary_split.split_max and btree_delete = btree_imp_binary_split.delete and btree_empty = btree_imp_binary_split.empty apply unfold_locales apply(sep_auto heap: bin_split_rule) done declare btree_imp_binary_split.ins.simps[code] declare btree_imp_binary_split.isin.simps[code] declare btree_imp_binary_split.del.simps[code] btree_imp_binary_split.split_max.simps[code] export_code btree_empty btree_isin btree_insert btree_delete checking OCaml SML Scala export_code btree_empty btree_isin btree_insert btree_delete in OCaml module_name BTree export_code btree_empty btree_isin btree_insert btree_delete in SML module_name BTree export_code btree_empty btree_isin btree_insert btree_delete in Scala module_name BTree end