theory BTree_Imp imports BTree Partially_Filled_Array Basic_Assn begin section "Imperative B-tree Definition" text "The heap data type definition. Anything stored on the heap always contains data, leafs are represented as None." datatype 'a btnode = Btnode "('a btnode ref option*'a) pfarray" "'a btnode ref option" text \Selector Functions\ primrec kvs :: "'a::heap btnode \ ('a btnode ref option*'a) pfarray" where [sep_dflt_simps]: "kvs (Btnode ts _) = ts" primrec last :: "'a::heap btnode \ 'a btnode ref option" where [sep_dflt_simps]: "last (Btnode _ t) = t" term arrays_update text \Encoding to natural numbers, as required by Imperative/HOL\ (* Note: should also work using the package "Deriving" *) fun btnode_encode :: "'a::heap btnode \ nat" where "btnode_encode (Btnode ts t) = to_nat (ts, t)" instance btnode :: (heap) heap apply (rule heap_class.intro) apply (rule countable_classI [of "btnode_encode"]) apply (metis btnode_encode.elims from_nat_to_nat fst_conv snd_conv) .. text "The refinement relationship to abstract B-trees." fun btree_assn :: "nat \ 'a::heap btree \ 'a btnode ref option \ assn" where "btree_assn k Leaf None = emp" | "btree_assn k (Node ts t) (Some a) = (\\<^sub>A tsi ti tsi'. a \\<^sub>r Btnode tsi ti * btree_assn k t ti * is_pfa (2*k) tsi' tsi * list_assn ((btree_assn k) \\<^sub>a id_assn) ts tsi' )" | "btree_assn _ _ _ = false" text "With the current definition of deletion, we would also need to directly reason on nodes and not only on references to them." fun btnode_assn :: "nat \ 'a::heap btree \ 'a btnode \ assn" where "btnode_assn k (Node ts t) (Btnode tsi ti) = (\\<^sub>A tsi'. btree_assn k t ti * is_pfa (2*k) tsi' tsi * list_assn ((btree_assn k) \\<^sub>a id_assn) ts tsi' )" | "btnode_assn _ _ _ = false" abbreviation "blist_assn k \ list_assn ((btree_assn k) \\<^sub>a id_assn)" end