(* Author: Joshua Schneider, ETH Zurich *) subsection \Sum types\ theory Applicative_Sum imports Applicative "HOL-Library.Adhoc_Overloading" begin text \ There are several ways to define an applicative functor based on sum types. First, we can choose whether the left or the right type is fixed. Both cases are isomorphic, of course. Next, what should happen if two values of the fixed type are combined? The corresponding operator must be associative, or the idiom laws don't hold true. We focus on the cases where the right type is fixed. We define two concrete functors: One based on Haskell's \textsf{Either} datatype, which prefers the value of the left operand, and a generic one using the @{class semigroup_add} class. Only the former lifts the \textbf{W} combinator, though. \ fun ap_sum :: "('e \ 'e \ 'e) \ ('a \ 'b) + 'e \ 'a + 'e \ 'b + 'e" where "ap_sum _ (Inl f) (Inl x) = Inl (f x)" | "ap_sum _ (Inl _) (Inr e) = Inr e" | "ap_sum _ (Inr e) (Inl _) = Inr e" | "ap_sum c (Inr e1) (Inr e2) = Inr (c e1 e2)" abbreviation "ap_either \ ap_sum (\x _. x)" abbreviation "ap_plus \ ap_sum (plus :: 'a :: semigroup_add \ _)" abbreviation (input) pure_sum where "pure_sum \ Inl" adhoc_overloading Applicative.pure pure_sum adhoc_overloading Applicative.ap ap_either (* ap_plus *) lemma ap_sum_id: "ap_sum c (Inl id) x = x" by (cases x) simp_all lemma ap_sum_ichng: "ap_sum c f (Inl x) = ap_sum c (Inl (\f. f x)) f" by (cases f) simp_all lemma (in semigroup) ap_sum_comp: "ap_sum f (ap_sum f (ap_sum f (Inl (o)) h) g) x = ap_sum f h (ap_sum f g x)" by(cases h g x rule: sum.exhaust[case_product sum.exhaust, case_product sum.exhaust]) (simp_all add: local.assoc) lemma semigroup_const: "semigroup (\x y. x)" by unfold_locales simp locale either_af = fixes B :: "'b \ 'b \ bool" assumes B_refl: "reflp B" begin applicative either (W) for pure: Inl ap: ap_either rel: "\A. rel_sum A B" proof - include applicative_syntax { fix f :: "('c \ 'c \ 'd) + 'a" and x show "pure (\f x. f x x) \ f \ x = f \ x \ x" by (cases f x rule: sum.exhaust[case_product sum.exhaust]) simp_all next interpret semigroup "\x y. x" by(rule semigroup_const) fix g :: "('d \ 'e) + 'a" and f :: "('c \ 'd) + 'a" and x show "pure (\g f x. g (f x)) \ g \ f \ x = g \ (f \ x)" by(rule ap_sum_comp[simplified comp_def[abs_def]]) next fix R and f :: "('c \ 'd) + 'b" and g :: "('c \ 'e) + 'b" and x assume "rel_sum (rel_fun (eq_on UNIV) R) B f g" then show "rel_sum R B (f \ x) (g \ x)" by (cases f g x rule: sum.exhaust[case_product sum.exhaust, case_product sum.exhaust]) (auto intro: B_refl[THEN reflpD] elim: rel_funE) } qed (auto intro: ap_sum_id[simplified id_def] ap_sum_ichng) end (* locale *) interpretation either_af "(=)" by unfold_locales simp applicative semigroup_sum for pure: Inl ap: ap_plus using ap_sum_id[simplified id_def] ap_sum_ichng add.ap_sum_comp[simplified comp_def[abs_def]] by auto no_adhoc_overloading Applicative.pure pure_sum end