(* Author: Andreas Lochbihler, ETH Zurich Author: Joshua Schneider, ETH Zurich *) subsection \Streams as an applicative functor\ theory Applicative_Stream imports Applicative "HOL-Library.Stream" "HOL-Library.Adhoc_Overloading" begin primcorec (transfer) ap_stream :: "('a \ 'b) stream \ 'a stream \ 'b stream" where "shd (ap_stream f x) = shd f (shd x)" | "stl (ap_stream f x) = ap_stream (stl f) (stl x)" adhoc_overloading Applicative.pure sconst adhoc_overloading Applicative.ap ap_stream context includes lifting_syntax applicative_syntax begin lemma ap_stream_id: "pure (\x. x) \ x = x" by (coinduction arbitrary: x) simp lemma ap_stream_homo: "pure f \ pure x = pure (f x)" by coinduction simp lemma ap_stream_interchange: "f \ pure x = pure (\f. f x) \ f" by (coinduction arbitrary: f) auto lemma ap_stream_composition: "pure (\g f x. g (f x)) \ g \ f \ x = g \ (f \ x)" by (coinduction arbitrary: g f x) auto applicative stream (S, K) for pure: sconst ap: ap_stream rel: stream_all2 set: sset proof - fix g :: "('b \ 'a \ 'c) stream" and f x show "pure (\g f x. g x (f x)) \ g \ f \ x = g \ x \ (f \ x)" by (coinduction arbitrary: g f x) auto next fix x :: "'b stream" and y :: "'a stream" show "pure (\x y. x) \ x \ y = x" by (coinduction arbitrary: x y) auto next fix R :: "'a \ 'b \ bool" show "(R ===> stream_all2 R) pure pure" proof fix x y assume "R x y" then show "stream_all2 R (pure x) (pure y)" by coinduction simp qed next fix R and f :: "('a \ 'b) stream" and g :: "('a \ 'c) stream" and x assume [transfer_rule]: "stream_all2 (eq_on (sset x) ===> R) f g" have [transfer_rule]: "stream_all2 (eq_on (sset x)) x x" by(simp add: stream.rel_refl_strong) show "stream_all2 R (f \ x) (g \ x)" by transfer_prover qed (rule ap_stream_homo) lemma smap_applicative[applicative_unfold]: "smap f x = pure f \ x" unfolding ap_stream_def by (coinduction arbitrary: x) auto lemma smap2_applicative[applicative_unfold]: "smap2 f x y = pure f \ x \ y" unfolding ap_stream_def by (coinduction arbitrary: x y) auto end end