(* Author: Joshua Schneider, ETH Zurich *) subsection \Set with Cartesian product\ theory Applicative_Set imports Applicative "HOL-Library.Adhoc_Overloading" begin definition ap_set :: "('a \ 'b) set \ 'a set \ 'b set" where "ap_set F X = {f x | f x. f \ F \ x \ X}" adhoc_overloading Applicative.ap ap_set lemma ap_set_transfer[transfer_rule]: "rel_fun (rel_set (rel_fun A B)) (rel_fun (rel_set A) (rel_set B)) ap_set ap_set" unfolding ap_set_def[abs_def] rel_set_def by (fastforce elim: rel_funE) applicative set (C) for pure: "\x. {x}" ap: ap_set rel: rel_set set: "\x. x" proof - fix R :: "'a \ 'b \ bool" show "rel_fun R (rel_set R) (\x. {x}) (\x. {x})" by (auto intro: rel_setI) next fix R and f :: "('a \ 'b) set" and g :: "('a \ 'c) set" and x assume [transfer_rule]: "rel_set (rel_fun (eq_on x) R) f g" have [transfer_rule]: "rel_set (eq_on x) x x" by (auto intro: rel_setI) show "rel_set R (ap_set f x) (ap_set g x)" by transfer_prover qed (unfold ap_set_def, fast+) end