(* Author: Andreas Lochbihler, ETH Zurich *) subsection \Probability mass functions\ theory Applicative_PMF imports Applicative "HOL-Probability.Probability" "HOL-Library.Adhoc_Overloading" begin abbreviation (input) pure_pmf :: "'a \ 'a pmf" where "pure_pmf \ return_pmf" definition ap_pmf :: "('a \ 'b) pmf \ 'a pmf \ 'b pmf" where "ap_pmf f x = map_pmf (\(f, x). f x) (pair_pmf f x)" adhoc_overloading Applicative.ap ap_pmf context includes applicative_syntax begin lemma ap_pmf_id: "pure_pmf (\x. x) \ x = x" by(simp add: ap_pmf_def pair_return_pmf1 pmf.map_comp o_def) lemma ap_pmf_comp: "pure_pmf (\) \ u \ v \ w = u \ (v \ w)" by(simp add: ap_pmf_def pair_return_pmf1 pair_map_pmf1 pair_map_pmf2 pmf.map_comp o_def split_def pair_pair_pmf) lemma ap_pmf_homo: "pure_pmf f \ pure_pmf x = pure_pmf (f x)" by(simp add: ap_pmf_def pair_return_pmf1) lemma ap_pmf_interchange: "u \ pure_pmf x = pure_pmf (\f. f x) \ u" by(simp add: ap_pmf_def pair_return_pmf1 pair_return_pmf2 pmf.map_comp o_def) lemma ap_pmf_K: "return_pmf (\x _. x) \ x \ y = x" by(simp add: ap_pmf_def pair_map_pmf1 pmf.map_comp pair_return_pmf1 o_def split_def map_fst_pair_pmf) lemma ap_pmf_C: "return_pmf (\f x y. f y x) \ f \ x \ y = f \ y \ x" apply(simp add: ap_pmf_def pair_map_pmf1 pmf.map_comp pair_return_pmf1 pair_pair_pmf o_def split_def) apply(subst (2) pair_commute_pmf) apply(simp add: pair_map_pmf2 pmf.map_comp o_def split_def) done lemma ap_pmf_transfer[transfer_rule]: "rel_fun (rel_pmf (rel_fun A B)) (rel_fun (rel_pmf A) (rel_pmf B)) ap_pmf ap_pmf" unfolding ap_pmf_def[abs_def] pair_pmf_def by transfer_prover applicative pmf (C, K) for pure: pure_pmf ap: ap_pmf rel: rel_pmf set: set_pmf proof - fix R :: "'a \ 'b \ bool" show "rel_fun R (rel_pmf R) pure_pmf pure_pmf" by transfer_prover next fix R and f :: "('a \ 'b) pmf" and g :: "('a \ 'c) pmf" and x assume [transfer_rule]: "rel_pmf (rel_fun (eq_on (set_pmf x)) R) f g" have [transfer_rule]: "rel_pmf (eq_on (set_pmf x)) x x" by (simp add: pmf.rel_refl_strong) show "rel_pmf R (ap_pmf f x) (ap_pmf g x)" by transfer_prover qed(rule ap_pmf_comp[unfolded o_def[abs_def]] ap_pmf_homo ap_pmf_C ap_pmf_K)+ end end