(* Author: Andreas Lochbihler, ETH Zurich *) subsection \Monoid\ theory Applicative_Monoid imports Applicative "HOL-Library.Adhoc_Overloading" begin datatype ('a, 'b) monoid_ap = Monoid_ap 'a 'b definition (in zero) pure_monoid_add :: "'b \ ('a, 'b) monoid_ap" where "pure_monoid_add = Monoid_ap 0" fun (in plus) ap_monoid_add :: "('a, 'b \ 'c) monoid_ap \ ('a, 'b) monoid_ap \ ('a, 'c) monoid_ap" where "ap_monoid_add (Monoid_ap a1 f) (Monoid_ap a2 x) = Monoid_ap (a1 + a2) (f x)" setup \ fold Sign.add_const_constraint [(@{const_name pure_monoid_add}, SOME (@{typ "'b \ ('a :: monoid_add, 'b) monoid_ap"})), (@{const_name ap_monoid_add}, SOME (@{typ "('a :: monoid_add, 'b \ 'c) monoid_ap \ ('a, 'b) monoid_ap \ ('a, 'c) monoid_ap"}))] \ adhoc_overloading Applicative.pure pure_monoid_add adhoc_overloading Applicative.ap ap_monoid_add applicative monoid_add for pure: pure_monoid_add ap: ap_monoid_add subgoal by(simp add: pure_monoid_add_def) subgoal for g f x by(cases g f x rule: monoid_ap.exhaust[case_product monoid_ap.exhaust, case_product monoid_ap.exhaust])(simp add: pure_monoid_add_def add.assoc) subgoal for x by(cases x)(simp add: pure_monoid_add_def) subgoal for f x by(cases f)(simp add: pure_monoid_add_def) done applicative comm_monoid_add (C) for pure: "pure_monoid_add :: _ \ (_ :: comm_monoid_add, _) monoid_ap" ap: "ap_monoid_add :: (_ :: comm_monoid_add, _) monoid_ap \ _" apply(rule monoid_add.homomorphism monoid_add.pure_B_conv monoid_add.interchange)+ subgoal for f x y by(cases f x y rule: monoid_ap.exhaust[case_product monoid_ap.exhaust, case_product monoid_ap.exhaust])(simp add: pure_monoid_add_def add_ac) apply(rule monoid_add.pure_I_conv) done class idemp_monoid_add = monoid_add + assumes add_idemp: "x + x = x" applicative idemp_monoid_add (W) for pure: "pure_monoid_add :: _ \ (_ :: idemp_monoid_add, _) monoid_ap" ap: "ap_monoid_add :: (_ :: idemp_monoid_add, _) monoid_ap \ _" apply(rule monoid_add.homomorphism monoid_add.pure_B_conv monoid_add.pure_I_conv)+ subgoal for f x by(cases f x rule: monoid_ap.exhaust[case_product monoid_ap.exhaust])(simp add: pure_monoid_add_def add.assoc add_idemp) apply(rule monoid_add.interchange) done text \Test case\ lemma includes applicative_syntax shows "pure_monoid_add (+) \ (x :: (nat, int) monoid_ap) \ y = pure (+) \ y \ x" by(applicative_lifting comm_monoid_add) simp end