(* Author: Joshua Schneider, ETH Zurich Author: Andreas Lochbihler, ETH Zurich *) section \An abstract applicative functor\ theory Abstract_AF imports Applicative "HOL-Library.Adhoc_Overloading" begin typedef 'a af = "UNIV :: 'a set" .. setup_lifting type_definition_af abbreviation "af_pure \ Abs_af" lift_definition af_ap :: "('a \ 'b) af \ 'a af \ 'b af" is "\f x. f x" . adhoc_overloading Applicative.pure Abs_af adhoc_overloading Applicative.ap af_ap context includes applicative_syntax begin lemma af_identity: "af_pure id \ x = x" by transfer simp lemma af_homomorphism: "af_pure f \ af_pure x = af_pure (f x)" by(fact af_ap.abs_eq) lemma af_composition: "af_pure comp \ g \ f \ x = g \ (f \ x)" by transfer simp lemma af_interchange: "f \ af_pure x = af_pure (\g. g x) \ f" by transfer simp end lifting_forget af.lifting hide_const Abs_af Rep_af hide_fact af_ap_def applicative af for pure: af_pure ap: af_ap using af_homomorphism af_composition af_identity af_interchange unfolding id_def comp_def[abs_def] . end