section \Optimizations for Code Integer\ theory Optimize_Integer imports Complex_Main "HOL-Library.Code_Target_Numeral" begin text \shallowly embed log and power\ definition log2::"int \ int" where "log2 a = floor (log 2 (of_int a))" context includes integer.lifting begin lift_definition log2_integer :: "integer \ integer" is "log2 :: int \ int" . end lemma [code]: "log2 (int_of_integer a) = int_of_integer (log2_integer a)" by (simp add: log2_integer.rep_eq) code_printing constant "log2_integer :: integer \ _" \ (SML) "IntInf.log2" definition power_int::"int \ int \ int" where "power_int a b = a ^ (nat b)" context includes integer.lifting begin lift_definition power_integer :: "integer \ integer \ integer" is "power_int :: int \ int \ int" . end code_printing constant "power_integer :: integer \ _ \ _" \ (SML) "IntInf.pow ((_), (_))" lemma [code]: "power_int (int_of_integer a) (int_of_integer b) = int_of_integer (power_integer a b)" by (simp add: power_integer.rep_eq) end