section\Examples on Proving Inequalities\ theory Ex_Ineqs imports Affine_Code Print Float_Real begin definition "plotcolors = [[(0, 1, ''0x000000'')], [(0, 2, ''0xff0000''), (1, 2, ''0x7f0000'')], [(0, 3, ''0x00ff00''), (1, 3, ''0x00aa00''), (2, 3, ''0x005500'')], [(1, 4, ''0x0000ff''), (2, 4, ''0x0000c0''), (3, 4, ''0x00007f''), (0, 4, ''0x00003f'')], [(0, 5, ''0x00ffff''), (1, 5, ''0x00cccc''), (2, 5, ''0x009999''), (3, 5, ''0x006666''), (4, 5, ''0x003333'')], [(0, 6, ''0xff00ff''), (1, 6, ''0xd500d5''), (2, 6, ''0xaa00aa''), (3, 6, ''0x800080''), (4, 6, ''0x550055''), (5, 6, ''0x2a002a'')]]" primrec prove_pos::"(nat * nat * string) list \ nat \ nat \ (nat \ real aform list \ real aform option) \ real aform list list \ bool" where "prove_pos prnt 0 p F X = (let _ = if prnt \ [] then print (STR ''# depth limit exceeded\'') else () in False)" | "prove_pos prnt (Suc i) p F XXS = (case XXS of [] \ True | (X#XS) \ let R = F p X; _ = if prnt \ [] then print (String.implode ((shows ''# '' o shows_box_of_aforms_hr X) ''\'')) else (); _ = fold (\(a, b, c) _. print (String.implode (shows_segments_of_aform a b X c ''\''))) prnt () in if R \ None \ 0 < Inf_aform' p (the R) then let _ = if prnt \ [] then print (STR ''# Success\'') else () in prove_pos prnt i p F XS else let _ = if prnt \ [] then print (STR ''# Split\'') else () in case split_aforms_largest_uncond X of (a, b) \ prove_pos prnt i p F (a#b#XS))" definition "prove_pos_slp prnt p fa i xs = (let slp = slp_of_fas [fa] in prove_pos prnt i p (\p xs. case approx_slp_outer p 1 slp xs of None \ None | Some [x] \ Some x | Some _ \ None) xs)" text\\label{sec:examples}\ experiment begin unbundle floatarith_notation text \The examples below are taken from @{url "http://link.springer.com/chapter/10.1007/978-3-642-38088-4_26"}, ``Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations'', Alexey Solovyev, Thomas C. Hales, NASA Formal Methods 2013, LNCS 7871 \ definition "schwefel = (5.8806 / 10 ^ 10) + (Var 0 - (Var 1)^\<^sub>e2)^\<^sub>e2 + (Var 1 - 1)^\<^sub>e2 + (Var 0 - (Var 2)^\<^sub>e2)^\<^sub>e2 + (Var 2 - 1)^\<^sub>e2" lemma schwefel: "5.8806 / 10 ^ 10 + (x0 - (x1)\<^sup>2)\<^sup>2 + (x1 - 1)\<^sup>2 + (x0 - (x2)\<^sup>2)\<^sup>2 + (x2 - 1)\<^sup>2 = interpret_floatarith schwefel [x0, x1, x2]" by (simp add: schwefel_def) lemma "prove_pos_slp [] 30 schwefel 100000 [aforms_of_ivls [-10,-10,-10] [10,10,10]]" unfolding schwefel_def by eval definition "delta6 = (Var 0 * Var 3 * (-Var 0 + Var 1 + Var 2 - Var 3 + Var 4 + Var 5) + Var 1 * Var 4 * ( Var 0 - Var 1 + Var 2 + Var 3 - Var 4 + Var 5) + Var 2 * Var 5 * ( Var 0 + Var 1 - Var 2 + Var 3 + Var 4 - Var 5) - Var 1 * Var 2 * Var 3 - Var 0 * Var 2 * Var 4 - Var 0 * Var 1 * Var 5 - Var 3 * Var 4 * Var 5)" schematic_goal delta6: "(x0 * x3 * (-x0 + x1 + x2 - x3 + x4 + x5) + x1 * x4 * ( x0 - x1 + x2 + x3 - x4 + x5) + x2 * x5 * ( x0 + x1 - x2 + x3 + x4 - x5) - x1 * x2 * x3 - x0 * x2 * x4 - x0 * x1 * x5 - x3 * x4 * x5) = interpret_floatarith delta6 [x0, x1, x2, x3, x4, x5]" by (simp add: delta6_def) lemma "prove_pos_slp [] 20 delta6 10000 [aforms_of_ivls (replicate 6 4) (replicate 6 (FloatR 104045 (-14)))]" unfolding delta6_def by eval definition "caprasse = (3.1801 + - Var 0 * (Var 2) ^\<^sub>e 3 + 4 * Var 1 * (Var 2)^\<^sub>e2 * Var 3 + 4 * Var 0 * Var 2 * (Var 3)^\<^sub>e2 + 2 * Var 1 * (Var 3)^\<^sub>e3 + 4 * Var 0 * Var 2 + 4 * (Var 2)^\<^sub>e2 - 10 * Var 1 * Var 3 + -10 * (Var 3)^\<^sub>e2 + 2)" schematic_goal caprasse: "(3.1801 + - xs!0 * (xs!2) ^ 3 + 4 * xs!1 * (xs!2)\<^sup>2 * xs!3 + 4 * xs!0 * xs!2 * (xs!3)\<^sup>2 + 2 * xs!1 * (xs!3)^3 + 4 * xs!0 * xs!2 + 4 * (xs!2)\<^sup>2 - 10 * xs!1 * xs!3 + -10 * (xs!3)\<^sup>2 + 2) = interpret_floatarith caprasse xs" by (simp add: caprasse_def) lemma "prove_pos_slp [] 20 caprasse 10000 [aforms_of_ivls (replicate 4 (1/2)) (replicate 4 (1/2))]" unfolding caprasse_def by eval definition "magnetism = 0.25001 + (Var 0)^\<^sub>e2 + 2 * (Var 1)^\<^sub>e2 + 2 * (Var 2)^\<^sub>e2 + 2 * (Var 3)^\<^sub>e2 + 2 * (Var 4)^\<^sub>e2 + 2 * (Var 5)^\<^sub>e2 + 2 * (Var 6)^\<^sub>e2 - Var 0" schematic_goal magnetism: "0.25001 + (xs!0)\<^sup>2 + 2 * (xs!1)\<^sup>2 + 2 * (xs!2)\<^sup>2 + 2 * (xs!3)\<^sup>2 + 2 * (xs!4)\<^sup>2 + 2 * (xs!5)\<^sup>2 + 2 * (xs!6)\<^sup>2 - xs!0 = interpret_floatarith magnetism xs" by (simp add: magnetism_def) end end