:: Basic Algebraic Structures :: by Library Committee environ vocabularies XBOOLE_0, SUBSET_1, BINOP_1, ZFMISC_1, STRUCT_0, ARYTM_3, FUNCT_1, FUNCT_5, SUPINF_2, ARYTM_1, RELAT_1, MESFUNC1, ALGSTR_0, CARD_1; notations TARSKI, XBOOLE_0, SUBSET_1, ZFMISC_1, BINOP_1, FUNCT_5, ORDINAL1, CARD_1, STRUCT_0; constructors BINOP_1, STRUCT_0, ZFMISC_1, FUNCT_5; registrations ZFMISC_1, CARD_1, STRUCT_0; theorems STRUCT_0; begin :: Additive structures reserve D for non empty set, d,e for Element of D, o,o1 for BinOp of D; reserve T for trivial set, s,t for Element of T, f,f1 for BinOp of T; reserve N for non trivial set, n,m for Element of N, b,b1 for BinOp of N; definition struct (1-sorted) addMagma (# carrier -> set, addF -> BinOp of the carrier #); end; registration let D,o; cluster addMagma(#D,o#) -> non empty; coherence; end; registration let T,f; cluster addMagma(#T,f#) -> trivial; coherence; end; registration let N,b; cluster addMagma(#N,b#) -> non trivial; coherence; end; definition let M be addMagma; let x,y be Element of M; func x+y -> Element of M equals (the addF of M).(x,y); coherence; end; definition func Trivial-addMagma -> addMagma equals addMagma(#{0}, op2 #); coherence; end; registration cluster Trivial-addMagma -> 1-element strict; coherence; end; registration cluster strict 1-element for addMagma; existence proof take Trivial-addMagma; thus thesis; end; end; definition let M be addMagma, x be Element of M; attr x is left_add-cancelable means for y,z being Element of M st x+y = x+z holds y = z; attr x is right_add-cancelable means for y,z being Element of M st y+ x = z+x holds y = z; end; definition let M be addMagma, x be Element of M; attr x is add-cancelable means x is right_add-cancelable left_add-cancelable; end; registration let M be addMagma; cluster right_add-cancelable left_add-cancelable -> add-cancelable for Element of M; coherence; cluster add-cancelable -> right_add-cancelable left_add-cancelable for Element of M; coherence; end; definition let M be addMagma; attr M is left_add-cancelable means :Def6: for x being Element of M holds x is left_add-cancelable; attr M is right_add-cancelable means :Def7: for x being Element of M holds x is right_add-cancelable; end; definition let M be addMagma; attr M is add-cancelable means M is right_add-cancelable left_add-cancelable; end; registration cluster right_add-cancelable left_add-cancelable -> add-cancelable for addMagma; coherence; cluster add-cancelable -> right_add-cancelable left_add-cancelable for addMagma; coherence; end; registration cluster Trivial-addMagma -> add-cancelable; coherence proof set M = Trivial-addMagma; thus M is right_add-cancelable proof let x,y,z be Element of M; assume y+x = z+x; thus thesis by STRUCT_0:def 10; end; let x,y,z being Element of M; assume x+y = x+z; thus thesis by STRUCT_0:def 10; end; end; registration cluster add-cancelable strict 1-element for addMagma; existence proof take Trivial-addMagma; thus thesis; end; end; registration let M be left_add-cancelable addMagma; cluster -> left_add-cancelable for Element of M; coherence by Def6; end; registration let M be right_add-cancelable addMagma; cluster -> right_add-cancelable for Element of M; coherence by Def7; end; definition struct (ZeroStr,addMagma) addLoopStr (# carrier -> set, addF -> BinOp of the carrier, ZeroF -> Element of the carrier #); end; registration let D,o,d; cluster addLoopStr(#D,o,d#) -> non empty; coherence; end; registration let T,f,t; cluster addLoopStr(#T,f,t#) -> trivial; coherence; end; registration let N,b,m; cluster addLoopStr(#N,b,m#) -> non trivial; coherence; end; definition func Trivial-addLoopStr -> addLoopStr equals addLoopStr(#{0}, op2, op0 #); coherence; end; registration cluster Trivial-addLoopStr -> 1-element strict; coherence; end; registration cluster strict 1-element for addLoopStr; existence proof take Trivial-addLoopStr; thus thesis; end; end; definition let M be addLoopStr, x be Element of M; attr x is left_complementable means ex y being Element of M st y+x = 0.M; attr x is right_complementable means ex y being Element of M st x+y = 0.M; end; definition let M be addLoopStr, x be Element of M; attr x is complementable means x is right_complementable left_complementable; end; registration let M be addLoopStr; cluster right_complementable left_complementable -> complementable for Element of M; coherence; cluster complementable -> right_complementable left_complementable for Element of M; coherence; end; definition let M be addLoopStr, x be Element of M; assume A1: x is left_complementable right_add-cancelable; func -x -> Element of M means it + x = 0.M; existence by A1; uniqueness by A1; end; definition let V be addLoopStr; let v,w be Element of V; func v - w -> Element of V equals v + -w; correctness; end; registration cluster Trivial-addLoopStr -> add-cancelable; coherence proof set M = Trivial-addLoopStr; thus M is right_add-cancelable proof let x,y,z be Element of M; assume y+x = z+x; thus thesis by STRUCT_0:def 10; end; let x,y,z being Element of M; assume x+y = x+z; thus thesis by STRUCT_0:def 10; end; end; definition let M be addLoopStr; attr M is left_complementable means :Def15: for x being Element of M holds x is left_complementable; attr M is right_complementable means :Def16: for x being Element of M holds x is right_complementable; end; definition let M be addLoopStr; attr M is complementable means M is right_complementable left_complementable; end; registration cluster right_complementable left_complementable -> complementable for addLoopStr; coherence; cluster complementable -> right_complementable left_complementable for addLoopStr; coherence; end; registration cluster Trivial-addLoopStr -> complementable; coherence proof set M = Trivial-addLoopStr; thus M is right_complementable proof let x be Element of M; take x; thus thesis by STRUCT_0:def 10; end; let x being Element of M; take x; thus thesis by STRUCT_0:def 10; end; end; registration cluster complementable add-cancelable strict 1-element for addLoopStr; existence proof take Trivial-addLoopStr; thus thesis; end; end; registration let M be left_complementable addLoopStr; cluster -> left_complementable for Element of M; coherence by Def15; end; registration let M be right_complementable addLoopStr; cluster -> right_complementable for Element of M; coherence by Def16; end; begin :: Multiplicative structures definition struct (1-sorted) multMagma (# carrier -> set, multF -> BinOp of the carrier #); end; registration let D,o; cluster multMagma(#D,o#) -> non empty; coherence; end; registration let T,f; cluster multMagma(#T,f#) -> trivial; coherence; end; registration let N,b; cluster multMagma(#N,b#) -> non trivial; coherence; end; definition let M be multMagma; let x,y be Element of M; func x*y -> Element of M equals (the multF of M).(x,y); coherence; end; definition func Trivial-multMagma -> multMagma equals multMagma(#{0}, op2 #); coherence; end; registration cluster Trivial-multMagma -> 1-element strict; coherence; end; registration cluster strict 1-element for multMagma; existence proof take Trivial-multMagma; thus thesis; end; end; definition let M be multMagma, x be Element of M; attr x is left_mult-cancelable means for y,z being Element of M st x*y = x*z holds y = z; attr x is right_mult-cancelable means for y,z being Element of M st y*x = z*x holds y = z; end; definition let M be multMagma, x be Element of M; attr x is mult-cancelable means x is right_mult-cancelable left_mult-cancelable; end; registration let M be multMagma; cluster right_mult-cancelable left_mult-cancelable -> mult-cancelable for Element of M; coherence; cluster mult-cancelable -> right_mult-cancelable left_mult-cancelable for Element of M; coherence; end; definition let M be multMagma; attr M is left_mult-cancelable means :Def23: for x being Element of M holds x is left_mult-cancelable; attr M is right_mult-cancelable means :Def24: for x being Element of M holds x is right_mult-cancelable; end; definition let M be multMagma; attr M is mult-cancelable means M is left_mult-cancelable right_mult-cancelable; end; registration cluster right_mult-cancelable left_mult-cancelable -> mult-cancelable for multMagma; coherence; cluster mult-cancelable -> right_mult-cancelable left_mult-cancelable for multMagma; coherence; end; registration cluster Trivial-multMagma -> mult-cancelable; coherence proof set M = Trivial-multMagma; thus M is left_mult-cancelable proof let x,y,z be Element of M; assume x*y = x*z; thus thesis by STRUCT_0:def 10; end; let x,y,z being Element of M; assume y*x = z*x; thus thesis by STRUCT_0:def 10; end; end; registration cluster mult-cancelable strict 1-element for multMagma; existence proof take Trivial-multMagma; thus thesis; end; end; registration let M be left_mult-cancelable multMagma; cluster -> left_mult-cancelable for Element of M; coherence by Def23; end; registration let M be right_mult-cancelable multMagma; cluster -> right_mult-cancelable for Element of M; coherence by Def24; end; definition struct (OneStr,multMagma) multLoopStr (# carrier -> set, multF -> BinOp of the carrier, OneF -> Element of the carrier #); end; registration let D,o,d; cluster multLoopStr(#D,o,d#) -> non empty; coherence; end; registration let T,f,t; cluster multLoopStr(#T,f,t#) -> trivial; coherence; end; registration let N,b,m; cluster multLoopStr(#N,b,m#) -> non trivial; coherence; end; definition func Trivial-multLoopStr -> multLoopStr equals multLoopStr(#{0}, op2, op0 #); coherence; end; registration cluster Trivial-multLoopStr -> 1-element strict; coherence; end; registration cluster strict 1-element for multLoopStr; existence proof take Trivial-multLoopStr; thus thesis; end; end; registration cluster Trivial-multLoopStr -> mult-cancelable; coherence proof set M = Trivial-multLoopStr; thus M is left_mult-cancelable proof let x,y,z be Element of M; assume x*y = x*z; thus thesis by STRUCT_0:def 10; end; let x,y,z being Element of M; assume y*x = z*x; thus thesis by STRUCT_0:def 10; end; end; definition let M be multLoopStr, x be Element of M; attr x is left_invertible means ex y being Element of M st y*x = 1.M; attr x is right_invertible means ex y being Element of M st x*y = 1.M; end; definition let M be multLoopStr, x be Element of M; attr x is invertible means x is right_invertible left_invertible; end; registration let M be multLoopStr; cluster right_invertible left_invertible -> invertible for Element of M; coherence; cluster invertible -> right_invertible left_invertible for Element of M; coherence; end; definition let M be multLoopStr, x be Element of M; assume that A1: x is left_invertible and A2: x is right_mult-cancelable; func /x -> Element of M means it * x = 1.M; existence by A1; uniqueness by A2; end; definition let M be multLoopStr; attr M is left_invertible means :Def31: for x being Element of M holds x is left_invertible; attr M is right_invertible means :Def32: for x being Element of M holds x is right_invertible; end; definition let M be multLoopStr; attr M is invertible means M is right_invertible left_invertible; end; registration cluster right_invertible left_invertible -> invertible for multLoopStr; coherence; cluster invertible -> right_invertible left_invertible for multLoopStr; coherence; end; registration cluster Trivial-multLoopStr -> invertible; coherence proof set M = Trivial-multLoopStr; thus M is right_invertible proof let x be Element of M; take x; thus thesis by STRUCT_0:def 10; end; let x being Element of M; take x; thus thesis by STRUCT_0:def 10; end; end; registration cluster invertible mult-cancelable strict 1-element for multLoopStr; existence proof take Trivial-multLoopStr; thus thesis; end; end; registration let M be left_invertible multLoopStr; cluster -> left_invertible for Element of M; coherence by Def31; end; registration let M be right_invertible multLoopStr; cluster -> right_invertible for Element of M; coherence by Def32; end; begin :: Almost definition struct (multLoopStr,ZeroOneStr) multLoopStr_0 (# carrier -> set, multF -> BinOp of the carrier, ZeroF, OneF -> Element of the carrier #); end; registration let D,o,d,e; cluster multLoopStr_0(#D,o,d,e#) -> non empty; coherence; end; registration let T,f,s,t; cluster multLoopStr_0(#T,f,s,t#) -> trivial; coherence; end; registration let N,b,m,n; cluster multLoopStr_0(#N,b,m,n#) -> non trivial; coherence; end; definition func Trivial-multLoopStr_0 -> multLoopStr_0 equals multLoopStr_0(#{0}, op2,op0, op0 #); coherence; end; registration cluster Trivial-multLoopStr_0 -> 1-element strict; coherence; end; registration cluster strict 1-element for multLoopStr_0; existence proof take Trivial-multLoopStr_0; thus thesis; end; end; ::$CD definition let M be multLoopStr_0; attr M is almost_left_cancelable means for x being Element of M st x <> 0.M holds x is left_mult-cancelable; attr M is almost_right_cancelable means for x being Element of M st x <> 0.M holds x is right_mult-cancelable; end; definition let M be multLoopStr_0; attr M is almost_cancelable means M is almost_left_cancelable almost_right_cancelable; end; registration cluster almost_right_cancelable almost_left_cancelable -> almost_cancelable for multLoopStr_0; coherence; cluster almost_cancelable -> almost_right_cancelable almost_left_cancelable for multLoopStr_0; coherence; end; registration cluster Trivial-multLoopStr_0 -> almost_cancelable; coherence proof set M = Trivial-multLoopStr_0; thus M is almost_left_cancelable by STRUCT_0:def 10; let x be Element of M; assume x <> 0.M; let y,z being Element of M; assume y*x = z*x; thus thesis by STRUCT_0:def 10; end; end; registration cluster almost_cancelable strict 1-element for multLoopStr_0; existence proof take Trivial-multLoopStr_0; thus thesis; end; end; definition let M be multLoopStr_0; attr M is almost_left_invertible means for x being Element of M st x <> 0.M holds x is left_invertible; attr M is almost_right_invertible means for x being Element of M st x <> 0.M holds x is right_invertible; end; definition let M be multLoopStr_0; attr M is almost_invertible means M is almost_right_invertible almost_left_invertible; end; registration cluster almost_right_invertible almost_left_invertible -> almost_invertible for multLoopStr_0; coherence; cluster almost_invertible -> almost_right_invertible almost_left_invertible for multLoopStr_0; coherence; end; registration cluster Trivial-multLoopStr_0 -> almost_invertible; coherence proof set M = Trivial-multLoopStr_0; thus M is almost_right_invertible by STRUCT_0:def 10; let x being Element of M; assume x <> 0.M; take x; thus thesis by STRUCT_0:def 10; end; end; registration cluster almost_invertible almost_cancelable strict 1-element for multLoopStr_0; existence proof take Trivial-multLoopStr_0; thus thesis; end; end; begin :: Double definition struct(addLoopStr,multLoopStr_0) doubleLoopStr (# carrier -> set, addF, multF -> BinOp of the carrier, OneF, ZeroF -> Element of the carrier #); end; registration let D,o,o1,d,e; cluster doubleLoopStr(#D,o,o1,d,e#) -> non empty; coherence; end; registration let T,f,f1,s,t; cluster doubleLoopStr(#T,f,f1,s,t#) -> trivial; coherence; end; registration let N,b,b1,m,n; cluster doubleLoopStr(#N,b,b1,m,n#) -> non trivial; coherence; end; definition func Trivial-doubleLoopStr -> doubleLoopStr equals doubleLoopStr(#{0}, op2, op2, op0, op0 #); coherence; end; registration cluster Trivial-doubleLoopStr -> 1-element strict; coherence; end; registration cluster strict 1-element for doubleLoopStr; existence proof take Trivial-doubleLoopStr; thus thesis; end; end; definition let M be multLoopStr, x,y be Element of M; func x/y -> Element of M equals x*/y; coherence; end;