:: One-Dimensional Congruence of Segments, Basic Facts and Midpoint Relation :: by Barbara Konstanta, Urszula Kowieska, Grzegorz Lewandowski and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies AFVECT0, SUBSET_1, XBOOLE_0, RELAT_1, ZFMISC_1, ANALOAF, PARSP_1, DIRAF, STRUCT_0, AFVECT01; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, ANALOAF, DIRAF, AFVECT0, RELSET_1; constructors DOMAIN_1, DIRAF, AFVECT0; registrations XBOOLE_0, STRUCT_0, AFVECT0; requirements SUBSET, BOOLE; theorems ZFMISC_1, AFVECT0, STRUCT_0, ANALOAF, DIRAF, XTUPLE_0; schemes RELSET_1; begin reserve AFV for WeakAffVect; reserve a,a9,b,b9,c,d,p,p9,q,q9,r,r9 for Element of AFV; registration let A be non empty set, C be Relation of [:A,A:]; cluster AffinStruct(#A,C#) -> non empty; coherence; end; Lm1: a,b '||' b,c & a<>c implies a,b // b,c proof assume that A1: a,b '||' b,c and A2: a<>c; not a,b // c,b by A2,AFVECT0:4,7; hence thesis by A1,DIRAF:def 4; end; Lm2: a,b // b,a iff ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b proof A1: now given p,q such that A2: a,b '||' p,q and A3: a,p '||' p,b and A4: a,q '||' q,b; now A5: now assume A6: MDist p,q; a,b // p,q or a,b // q,p by A2,DIRAF:def 4; then MDist a,b by A6,AFVECT0:3,15; hence a,b // b,a by AFVECT0:def 2; end; assume A7: a<>b; then a,q // q,b by A4,Lm1; then A8: Mid a,q,b by AFVECT0:def 3; A9: now assume p=q; then a,b // p,p by A2,DIRAF:def 4; hence contradiction by A7,AFVECT0:def 1; end; a,p // p,b by A3,A7,Lm1; then Mid a,p,b by AFVECT0:def 3; hence a,b // b,a by A8,A9,A5,AFVECT0:20; end; hence a,b // b,a by AFVECT0:2; end; now assume A10: a,b // b,a; A11: now assume a<>b; then A12: MDist a,b by A10,AFVECT0:def 2; consider p such that A13: Mid a,p,b by AFVECT0:19; A14: a,p // p,b by A13,AFVECT0:def 3; consider q such that A15: a,b // p,q by AFVECT0:def 1; take p,q; Mid a,q,b by A13,A15,A12,AFVECT0:15,23; then a,q // q,b by AFVECT0:def 3; hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A15,A14,DIRAF:def 4; end; now assume A16: a=b; take p=a,q=a; a,b // p,q by A16,AFVECT0:2; hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A16,DIRAF:def 4; end; hence ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A11; end; hence thesis by A1; end; Lm3: a,b '||' c,d implies b,a '||' c,d proof assume a,b '||' c,d; then a,b // c,d or a,b // d,c by DIRAF:def 4; then b,a // d,c or b,a // c,d by AFVECT0:7; hence thesis by DIRAF:def 4; end; Lm4: a,b '||' b,a proof a,b // a,b by AFVECT0:1; hence thesis by DIRAF:def 4; end; Lm5: a,b '||' p,p implies a=b proof assume a,b '||' p,p; then a,b // p,p by DIRAF:def 4; hence thesis by AFVECT0:def 1; end; Lm6: for a,b,c,d,p,q holds a,b '||' p,q & c,d '||' p,q implies a,b '||' c,d proof let a,b,c,d,p,q; assume a,b '||' p,q & c,d '||' p,q; then a,b // p,q & c,d // p,q or a,b // p,q & c,d // q,p or a,b // q,p & c,d // p,q or a,b // q,p & c,d // q,p by DIRAF:def 4; then a,b // c,d or a,b // p,q & d,c // p,q or a,b // q,p & d,c // q,p by AFVECT0:7,def 1; then a,b // c,d or a,b // d,c by AFVECT0:def 1; hence thesis by DIRAF:def 4; end; Lm7: ex b st a,b '||' b,c proof consider b such that A1: a,b // b,c by AFVECT0:def 1; take b; thus thesis by A1,DIRAF:def 4; end; Lm8: for a,a9,b,b9,p st a<>a9 & b<>b9 & p,a '||' p,a9 & p,b '||' p,b9 holds a, b '||' a9,b9 proof let a,a9,b,b9,p; assume that A1: a<>a9 and A2: b<>b9 and A3: p,a '||' p,a9 and A4: p,b '||' p,b9; b,p // p,b9 by A2,A4,Lm1,Lm3; then A5: Mid b,p,b9 by AFVECT0:def 3; a,p // p,a9 by A1,A3,Lm1,Lm3; then Mid a,p,a9 by AFVECT0:def 3; then a,b // b9,a9 by A5,AFVECT0:25; hence thesis by DIRAF:def 4; end; Lm9: a=b or ex c st a<>c & a,b '||' b,c or ex p,p9 st p<>p9 & a,b '||' p,p9 & a,p '||' p,b & a,p9 '||' p9,b proof consider c such that A1: a,b // b,c by AFVECT0:def 1; A2: now assume a=c; then consider p,p9 such that A3: a,b '||' p,p9 and A4: a,p '||' p,b & a,p9 '||' p9,b by A1,Lm2; p=p9 implies a=b by A3,Lm5; hence a=b or ex p,p9 st p<>p9 & a,b '||' p,p9 & a,p '||' p,b & a,p9 '||' p9 ,b by A3,A4; end; now assume A5: a<>c; a,b '||' b,c by A1,DIRAF:def 4; hence ex c st a<>c & a,b '||' b,c by A5; end; hence thesis by A2; end; Lm10: for a,b,b9,p,p9,c st a,b '||' b,c & b,b9 '||' p,p9 & b,p '||' p,b9 & b, p9 '||' p9,b9 holds a,b9 '||' b9,c proof let a,b,b9,p,p9,c; assume that A1: a,b '||' b,c and A2: b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9; A3: b,b9 // b9,b by A2,Lm2; A4: now assume A5: a,b // b,c; then A6: Mid a,b,c by AFVECT0:def 3; A7: now assume MDist b,b9; then Mid a,b9,c by A6,AFVECT0:23; then a,b9 // b9,c by AFVECT0:def 3; hence thesis by DIRAF:def 4; end; b=b9 implies thesis by A5,DIRAF:def 4; hence thesis by A3,A7,AFVECT0:def 2; end; now assume a,b // c,b; then a=c by AFVECT0:4,7; then a,b9 // c,b9 by AFVECT0:1; hence thesis by DIRAF:def 4; end; hence thesis by A1,A4,DIRAF:def 4; end; Lm11: for a,b,b9,c st a<>c & b<>b9 & a,b '||' b,c & a,b9 '||' b9,c holds ex p, p9 st p<>p9 & b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9 proof let a,b,b9,c; assume that A1: a<>c and A2: b<>b9 and A3: a,b '||' b,c and A4: a,b9 '||' b9,c; a,b9 // b9,c by A1,A4,Lm1; then A5: Mid a,b9,c by AFVECT0:def 3; a,b // b,c by A1,A3,Lm1; then Mid a,b,c by AFVECT0:def 3; then MDist b, b9 by A2,A5,AFVECT0:20; then b,b9 // b9,b by AFVECT0:def 2; then consider p,p9 such that A6: b,b9 '||' p,p9 and A7: b,p '||' p,b9 & b,p9 '||' p9,b9 by Lm2; p<>p9 implies thesis by A6,A7; hence thesis by A2,A6,Lm5; end; Lm12: for a,b,c,p,p9,q,q9 st a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a, q '||' q,c & a,p9 '||' p9,b & a,q9 '||' q9,c holds ex r,r9 st b,c '||' r,r9 & b ,r '||' r,c & b,r9 '||' r9,c proof let a,b,c,p,p9,q,q9; assume a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a,q '||' q,c & a,p9 '||' p9,b & a,q9 '||' q9,c; then a,b // b,a & a,c // c,a by Lm2; then b,c // c,b by AFVECT0:12; hence thesis by Lm2; end; set AFV0 = the WeakAffVect; set X = the carrier of AFV0; set XX = [:X,X:]; defpred P[object,object] means ex a,b,c,d being Element of X st $1=[a,b] & $2=[c,d] & a,b '||' c,d; consider P being Relation of XX,XX such that Lm13: for x,y being object holds [x,y] in P iff x in XX & y in XX & P[x,y] from RELSET_1:sch 1; Lm14: for a,b,c,d being Element of X holds [[a,b],[c,d]] in P iff a,b '||' c,d proof let a,b,c,d be Element of X; A1: [[a,b],[c,d]] in P implies a,b '||' c,d proof assume [[a,b],[c,d]] in P; then consider a9,b9,c9,d9 being Element of X such that A2: [a,b]=[a9,b9] and A3: [c,d]=[c9,d9] and A4: a9,b9 '||' c9,d9 by Lm13; A5: c = c9 by A3,XTUPLE_0:1; a=a9 & b=b9 by A2,XTUPLE_0:1; hence thesis by A3,A4,A5,XTUPLE_0:1; end; [a,b] in XX & [c,d] in XX by ZFMISC_1:def 2; hence thesis by A1,Lm13; end; set WAS = AffinStruct(#the carrier of AFV0,P#); Lm15: for a,b,c,d being Element of AFV0, a9,b9,c9,d9 being Element of WAS st a=a9 & b=b9 & c =c9 & d=d9 holds a,b '||' c,d iff a9,b9 // c9 ,d9 proof let a,b,c,d be Element of AFV0, a9,b9,c9,d9 be Element of WAS such that A1: a=a9 & b=b9 & c =c9 & d=d9; A2: now assume a9,b9 // c9,d9; then [[a9,b9],[c9,d9]] in P by ANALOAF:def 2; hence a,b '||' c,d by A1,Lm14; end; now assume a,b '||' c,d; then [[a,b],[c,d]] in the CONGR of WAS by Lm14; hence a9,b9 // c9,d9 by A1,ANALOAF:def 2; end; hence thesis by A2; end; Lm16: now thus ex a9,b9 being Element of WAS st a9<>b9 by STRUCT_0:def 10; thus for a9,b9 being Element of WAS holds a9,b9 // b9,a9 proof let a9,b9 be Element of WAS; reconsider a=a9,b=b9 as Element of AFV0; a,b '||' b,a by Lm4; hence thesis by Lm15; end; thus for a9,b9 being Element of WAS st a9,b9 // a9,a9 holds a9=b9 proof let a9,b9 be Element of WAS such that A1: a9,b9 // a9,a9; reconsider a=a9,b=b9 as Element of AFV0; a,b '||' a,a by A1,Lm15; hence thesis by Lm5; end; thus for a,b,c,d,p,q being Element of WAS st a,b // p,q & c,d // p,q holds a ,b // c,d proof let a,b,c,d,p,q be Element of WAS such that A2: a,b // p,q & c,d // p,q; reconsider a1=a,b1=b,c1=c, d1=d,p1=p,q1=q as Element of AFV0; a1,b1 '||' p1,q1 & c1,d1 '||' p1,q1 by A2,Lm15; then a1,b1 '||' c1,d1 by Lm6; hence thesis by Lm15; end; thus for a,c being Element of WAS ex b being Element of WAS st a,b // b,c proof let a,c be Element of WAS; reconsider a1=a,c1=c as Element of AFV0; consider b1 being Element of AFV0 such that A3: a1,b1 '||' b1,c1 by Lm7; reconsider b=b1 as Element of WAS; a,b // b,c by A3,Lm15; hence thesis; end; thus for a,a9,b,b9,p being Element of WAS st a<>a9 & b<>b9& p,a // p,a9 & p, b // p,b9 holds a,b // a9,b9 proof let a,a9,b,b9,p be Element of WAS such that A4: a<>a9 & b<>b9 and A5: p,a // p,a9 & p,b // p,b9; reconsider a1=a,a19=a9,b1=b,b19=b9,p1=p as Element of AFV0; p1,a1 '||' p1,a19 & p1,b1 '||' p1,b19 by A5,Lm15; then a1,b1 '||' a19,b19 by A4,Lm8; hence thesis by Lm15; end; thus for a,b being Element of WAS holds a=b or ex c being Element of WAS st a<>c & a,b // b,c or ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p // p,b & a,p9 // p9,b proof let a,b be Element of WAS such that A6: not a=b; reconsider a1=a,b1=b as Element of AFV0; A7: now given p1,p19 being Element of AFV0 such that A8: p1<>p19 and A9: a1,b1 '||' p1,p19 & a1,p1 '||' p1,b1 and A10: a1,p19 '||' p19,b1; reconsider p=p1,p9=p19 as Element of WAS; A11: a,p9 // p9,b by A10,Lm15; a,b // p,p9 & a,p // p,b by A9,Lm15; hence ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p // p,b & a ,p9 // p9,b by A8,A11; end; now given c1 being Element of AFV0 such that A12: a1<>c1 and A13: a1,b1 '||' b1,c1; reconsider c =c1 as Element of WAS; a,b // b,c by A13,Lm15; hence ex c being Element of WAS st a<>c & a,b // b,c by A12; end; hence thesis by A6,A7,Lm9; end; thus for a,b,b9,p,p9,c being Element of WAS st a,b // b,c & b,b9 // p,p9 & b ,p // p,b9& b,p9 // p9,b9 holds a,b9 // b9,c proof let a,b,b9,p,p9,c be Element of WAS such that A14: a,b // b,c & b,b9 // p,p9 and A15: b,p // p,b9 & b,p9 // p9,b9; reconsider a1=a,b1=b,b19=b9,p1=p, p19=p9,c1=c as Element of AFV0; A16: b1,p1 '||' p1,b19 & b1,p19 '||' p19,b19 by A15,Lm15; a1,b1 '||' b1,c1 & b1,b19 '||' p1,p19 by A14,Lm15; then a1,b19 '||' b19,c1 by A16,Lm10; hence thesis by Lm15; end; thus for a,b,b9,c being Element of WAS st a<>c & b<>b9 & a,b // b,c & a,b9 // b9,c holds ex p,p9 being Element of WAS st p<>p9 & b,b9 // p,p9& b,p // p,b9 & b,p9 // p9,b9 proof let a,b,b9,c be Element of WAS such that A17: a<>c & b<>b9 and A18: a,b // b,c & a,b9 // b9,c; reconsider a1=a,b1=b,b19=b9,c1=c as Element of AFV0; a1,b1 '||' b1,c1 & a1,b19 '||' b19,c1 by A18,Lm15; then consider p1,p19 being Element of AFV0 such that A19: p1<>p19 and A20: b1,b19 '||' p1,p19 & b1,p1 '||' p1,b19 and A21: b1,p19 '||' p19,b19 by A17,Lm11; reconsider p=p1,p9=p19 as Element of WAS; A22: b,p9 // p9,b9 by A21,Lm15; b,b9 // p,p9 & b,p // p,b9 by A20,Lm15; hence thesis by A19,A22; end; thus for a,b,c,p,p9,q,q9 being Element of WAS st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being Element of WAS st b,c // r,r9 & b,r // r,c & b,r9 // r9,c proof let a,b,c,p,p9,q,q9 be Element of WAS such that A23: a,b // p,p9 & a,c // q,q9 and A24: a,p // p,b & a,q // q,c and A25: a,p9 // p9,b & a,q9 // q9,c; reconsider a1=a,b1=b,c1=c,p1=p,p19=p9,q1=q,q19=q9 as Element of AFV0; A26: a1,p1 '||' p1,b1 & a1,q1 '||' q1,c1 by A24,Lm15; A27: a1,p19 '||' p19,b1 & a1,q19 '||' q19,c1 by A25,Lm15; a1,b1 '||' p1,p19 & a1,c1 '||' q1,q19 by A23,Lm15; then consider r1,r19 being Element of AFV0 such that A28: b1,c1 '||' r1,r19 & b1,r1 '||' r1,c1 and A29: b1,r19 '||' r19,c1 by A26,A27,Lm12; reconsider r=r1,r9=r19 as Element of WAS; A30: b,r9 // r9,c by A29,Lm15; b,c // r,r9 & b,r // r,c by A28,Lm15; hence thesis by A30; end; end; definition let IT be non empty AffinStruct; attr IT is WeakAffSegm-like means :Def1: (for a,b being Element of IT holds a,b // b,a) & (for a,b being Element of IT st a,b // a,a holds a=b) & (for a,b, c,d,p,q being Element of IT st a,b // p,q & c,d // p,q holds a,b // c,d) & (for a,c being Element of IT ex b being Element of IT st a,b // b,c) & (for a,a9,b, b9,p being Element of IT st a<>a9 & b<>b9& p,a // p,a9 & p,b // p,b9 holds a,b // a9,b9) & (for a,b being Element of IT holds a=b or ex c being Element of IT st ( a<>c & a,b // b,c) or ex p,p9 being Element of IT st (p<>p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b)) & (for a,b,b9,p,p9,c being Element of IT st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds a,b9 // b9,c) & (for a,b,b9,c being Element of IT st a<>c & b<>b9 & a,b // b,c & a,b9 // b9,c holds ex p,p9 being Element of IT st p<>p9 & b,b9 // p,p9& b,p // p,b9 & b,p9 // p9, b9) & for a,b,c,p,p9,q,q9 being Element of IT st a,b // p,p9 & a,c // q,q9 & a, p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being Element of IT st b,c // r,r9 & b,r // r,c & b,r9 // r9,c; end; registration cluster strict WeakAffSegm-like for non trivial AffinStruct; existence proof WAS is WeakAffSegm-like non trivial by Lm16; hence thesis; end; end; definition mode WeakAffSegm is WeakAffSegm-like non trivial AffinStruct; end; :: :: PROPERTIES OF RELATION OF CONGRUENCE OF THE CARRIER :: reserve AFV for WeakAffSegm; reserve a,b,b9,b99,c,d,p,p9 for Element of AFV; theorem Th1: a,b // a,b proof a,b // b,a by Def1; hence thesis by Def1; end; theorem Th2: a,b // c,d implies c,d // a,b proof assume A1: a,b // c,d; c,d // c,d by Th1; hence thesis by A1,Def1; end; theorem Th3: a,b // c,d implies a,b // d,c proof assume A1: a,b // c,d; d,c // c,d by Def1; hence thesis by A1,Def1; end; theorem Th4: a,b // c,d implies b,a // c,d proof assume a,b // c,d; then c,d // a,b by Th2; then c,d // b,a by Th3; hence thesis by Th2; end; theorem Th5: for a,b holds a,a // b,b proof let a,b; now consider c such that A1: a,c // c,b by Def1; assume A2: a<>b; c,a // c,b by A1,Th4; hence thesis by A2,Def1; end; hence thesis by Def1; end; theorem Th6: a,b // c,c implies a=b proof assume A1: a,b // c,c; a,a // c,c by Th5; then a,b // a,a by A1,Def1; hence thesis by Def1; end; theorem Th7: a,b // p,p9 & a,b // b,c & a,p // p,b & a,p9 // p9,b implies a=c proof assume that A1: a,b // p,p9 and A2: a,b // b,c and A3: a,p // p,b and A4: a,p9 // p9,b; p,b // a,p by A3,Th2; then p,b // p,a by Th3; then A5: b,p // p,a by Th4; p9,b // a,p9 by A4,Th2; then p9,b // p9,a by Th3; then A6: b,p9 // p9,a by Th4; b,a // p,p9 by A1,Th4; then a,a // a,c by A2,A5,A6,Def1; then a,c // a,a by Th2; hence thesis by Def1; end; theorem a,b9 // a,b99 & a,b // a,b99 implies b=b9 or b=b99 or b9=b99 proof assume A1: a,b9 // a,b99 & a,b // a,b99; now assume b9<>b99 & b<>b99; then b9,b // b99,b99 by A1,Def1; hence thesis by Th6; end; hence thesis; end; :: :: RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION :: definition let AFV; let a,b; pred MDist a,b means ex p,p9 st p<>p9 & a,b // p,p9 & a,p // p,b & a, p9 // p9,b; end; definition let AFV; let a,b,c; pred Mid a,b,c means a=b & b=c & a=c or a=c & MDist a,b or a<>c & a,b // b,c; end; theorem a<>b & not MDist a,b implies ex c st a<>c & a,b // b,c by Def1; theorem MDist a,b & a,b // b,c implies a=c by Th7; theorem MDist a,b implies a<>b by Th2,Th6;