import analysis.asymptotics.asymptotics import linear_algebra.dual import measure_theory.integral.interval_integral import analysis.calculus.parametric_integral import to_mathlib.topology.periodic import to_mathlib.analysis.calculus import to_mathlib.measure_theory.parametric_interval_integral import notations import loops.basic import local.dual_pair notation `∂₁` := partial_fderiv_fst ℝ noncomputable theory open set function finite_dimensional asymptotics filter topological_space int measure_theory continuous_linear_map open_locale topological_space unit_interval variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] {F : Type*} [normed_add_comm_group F] [normed_space ℝ F] [measurable_space F] [borel_space F] [finite_dimensional ℝ F] {G : Type*} [normed_add_comm_group G] [normed_space ℝ G] [finite_dimensional ℝ G] {H : Type*} [normed_add_comm_group H] [normed_space ℝ H] [finite_dimensional ℝ H] {π : E →L[ℝ] ℝ} (N : ℝ) (γ : E → loop F) /-- Theillière's corrugations. -/ def corrugation (π : E →L[ℝ] ℝ) (N : ℝ) (γ : E → loop F) : E → F := λ x, (1/N) • ∫ t in 0..(N*π x), (γ x t - (γ x).average) local notation `𝒯` := corrugation π lemma per_corrugation (γ : loop F) (hγ : ∀ s t, interval_integrable γ volume s t) : one_periodic (λ s, ∫ t in 0..s, γ t - γ.average) := begin have int_avg : ∀ s t, interval_integrable (λ u : ℝ, γ.average) volume s t, from λ s t, interval_integrable_const, intros s, have int₁ : interval_integrable (λ t, γ t - γ.average) volume 0 s, from (hγ _ _).sub (int_avg _ _), have int₂ : interval_integrable (λ t, γ t - γ.average) volume s (s + 1), from (hγ _ _).sub (int_avg _ _), have int₃ : interval_integrable γ volume s (s + 1), from hγ _ _, have int₄ : interval_integrable (λ t, γ.average) volume s (s + 1), from int_avg _ _, dsimp only, /- Rmk: Lean doesn't want to rewrite using `interval_integral.integral_sub` without being given the integrability assumptions :-( -/ rw [← interval_integral.integral_add_adjacent_intervals int₁ int₂, interval_integral.integral_sub int₃ int₄, γ.periodic.interval_integral_add_eq s 0, zero_add, loop.average], simp only [add_zero, add_tsub_cancel_left, interval_integral.integral_const, one_smul, sub_self] end @[simp] lemma corrugation_const {x : E} (h : (γ x).is_const) : 𝒯 N γ x = 0 := begin unfold corrugation, rw loop.is_const_iff_const_avg at h, rw h, simp only [add_zero, interval_integral.integral_const, loop.const_apply, loop.average_const, smul_zero, sub_self] end variables (γ π N) lemma corrugation.support : support (𝒯 N γ) ⊆ loop.support γ := begin intros x x_in, apply subset_closure, intro h, apply x_in, simp [h] end lemma corrugation_eq_zero (x ∉ loop.support γ) : corrugation π N γ x = 0 := nmem_support.mp (λ hx, H (corrugation.support N γ hx)) lemma corrugation.c0_small_on [first_countable_topology E] [t2_space E] [locally_compact_space E] {γ : ℝ → E → loop F} {K : set E} (hK : is_compact K) (h_le : ∀ x, ∀ t ≤ 0, γ t x = γ 0 x) (h_ge : ∀ x, ∀ t ≥ 1, γ t x = γ 1 x) (hγ_cont : continuous ↿γ) {ε : ℝ} (ε_pos : 0 < ε) : ∀ᶠ N in at_top, ∀ (x ∈ K) t, ∥𝒯 N (γ t) x∥ < ε := begin have cont' : continuous ↿(λ (q : ℝ × E) t, ∫ t in 0..t, (γ q.1 q.2) t - (γ q.1 q.2).average), { refine continuous_parametric_interval_integral_of_continuous _ continuous_snd, refine (hγ_cont.comp₃ continuous_fst.fst.fst continuous_fst.fst.snd continuous_snd).sub _, refine loop.continuous_average _, exact hγ_cont.comp₃ continuous_fst.fst.fst.fst continuous_fst.fst.fst.snd continuous_snd }, rcases cont'.bounded_on_compact_of_one_periodic _ ((is_compact_Icc : is_compact I).prod hK) with ⟨C, hC⟩, { apply (const_mul_one_div_lt ε_pos C).mono, intros N hN x hx t, rw [corrugation, norm_smul, mul_comm], apply (mul_le_mul_of_nonneg_right _ (norm_nonneg $ 1/N)).trans_lt hN, cases le_or_lt t 0 with ht ht, { rw h_le x t ht, apply hC (0, x), simp [hx] }, { cases le_or_lt 1 t with ht' ht', { rw h_ge x t ht', apply hC (1, x), simp [hx] }, { exact hC (t, x) (mk_mem_prod ⟨ht.le, ht'.le⟩ hx) _ } } }, { rintros ⟨t, x⟩, apply per_corrugation, intros a b, exact (hγ_cont.comp₃ continuous_const continuous_const continuous_id).interval_integrable _ _ } end variables [finite_dimensional ℝ E] variables {γ} lemma corrugation.cont_diff {n : with_top ℕ} (hγ_diff : 𝒞 n ↿γ) : 𝒞 n (𝒯 N γ) := (cont_diff_parametric_primitive_of_cont_diff (cont_diff_sub_average hγ_diff) (π.cont_diff.const_smul N) 0).const_smul _ lemma corrugation.cont_diff' {n : with_top ℕ} {γ : G → E → loop F} (hγ_diff : 𝒞 n ↿γ) {x : H → E} (hx : 𝒞 n x) {g : H → G} (hg : 𝒞 n g) : 𝒞 n (λ h, 𝒯 N (γ $ g h) $ x h) := begin apply cont_diff.const_smul, apply cont_diff_parametric_primitive_of_cont_diff, { apply cont_diff.sub, { exact hγ_diff.comp₃ hg.fst' hx.fst' cont_diff_snd }, { apply cont_diff_average, exact hγ_diff.comp₃ hg.fst'.fst' hx.fst'.fst' cont_diff_snd } }, { apply cont_diff_const.mul (π.cont_diff.comp hx) }, end /-- The remainder appearing when differentiating a corrugation. -/ def corrugation.remainder (π : E → ℝ) (N : ℝ) (γ : E → loop F) : E → (E →L[ℝ] F) := λ x, (1/N) • ∫ t in 0..(N*π x), ∂₁ (λ x t, (γ x).normalize t) x t local notation `R` := corrugation.remainder π lemma remainder_eq (N : ℝ) {γ : E → loop F} (h : 𝒞 1 ↿γ) : R N γ = λ x, (1/N) • ∫ t in 0..(N*π x), (loop.diff γ x).normalize t := by { simp_rw loop.diff_normalize h, refl } -- The next lemma is a restatement of the above to emphasize that remainder is a corrugation -- but it won't be used directly lemma remainder_eq_corrugation (N : ℝ) {γ : E → loop F} (h : 𝒞 1 ↿γ) : R N γ = 𝒯 N (λ x, (loop.diff γ x)) := remainder_eq _ _ h @[simp] lemma remainder_eq_zero (N : ℝ) {γ : E → loop F} (h : 𝒞 1 ↿γ) {x : E} (hx : x ∉ loop.support γ) : R N γ x = 0 := begin have hx' : x ∉ loop.support (loop.diff γ), from (λ h, hx $ loop.support_diff h), simp [remainder_eq π N h, loop.normalize_of_is_const (loop.is_const_of_not_mem_support hx')] end lemma corrugation.fderiv_eq {N : ℝ} (hN : N ≠ 0) (hγ_diff : 𝒞 1 ↿γ) : D (𝒯 N γ) = λ x : E, (γ x (N*π x) - (γ x).average) ⬝ π + R N γ x := begin ext1 x₀, have hπ_diff := π.cont_diff, have diff := cont_diff_sub_average hγ_diff, have key := (has_fderiv_at_parametric_primitive_of_cont_diff' diff (hπ_diff.const_smul N) x₀ 0).2, erw [fderiv_const_smul key.differentiable_at, key.fderiv, smul_add, add_comm], congr' 1, rw [fderiv_const_smul (hπ_diff.differentiable le_rfl).differentiable_at N, π.fderiv], simp only [smul_smul, inv_mul_cancel hN, one_div, algebra.id.smul_eq_mul, one_smul, continuous_linear_map.comp_smul] end lemma corrugation.fderiv_apply (hN : N ≠ 0) (hγ_diff : 𝒞 1 ↿γ) (x v : E) : D (𝒯 N γ) x v = (π v) • (γ x (N*π x) - (γ x).average) + R N γ x v := by simp only [corrugation.fderiv_eq hN hγ_diff, to_span_singleton_apply, add_apply, coe_comp', comp_app] lemma fderiv_corrugated_map (hN : N ≠ 0) (hγ_diff : 𝒞 1 ↿γ) {f : E → F} (hf : 𝒞 1 f) (p : dual_pair' E) {x} (hfγ : (γ x).average = D f x p.v) : D (f + corrugation p.π N γ) x = p.update (D f x) (γ x (N*p.π x)) + corrugation.remainder p.π N γ x := begin ext v, erw fderiv_add (hf.differentiable le_rfl).differentiable_at ((corrugation.cont_diff N hγ_diff).differentiable le_rfl).differentiable_at, simp_rw [continuous_linear_map.add_apply, corrugation.fderiv_apply N hN hγ_diff, hfγ, dual_pair'.update, continuous_linear_map.add_apply,p.π.comp_to_span_singleton_apply, add_assoc], end lemma remainder.smooth {γ : G → E → loop F} (hγ_diff : 𝒞 ∞ ↿γ) {x : H → E} (hx : 𝒞 ∞ x) {g : H → G} (hg : 𝒞 ∞ g) : 𝒞 ∞ (λ h, R N (γ $ g h) $ x h) := begin apply cont_diff.const_smul, apply cont_diff_parametric_primitive_of_cont_diff, { let ψ : E → (H × ℝ) → F := λ x q, (γ (g q.1) x).normalize q.2, change 𝒞 ⊤ (λ (q : H × ℝ), ∂₁ ψ (x q.1) (q.1, q.2)), refine (cont_diff.cont_diff_top_partial_fst _).comp₂ hx.fst' (cont_diff_fst.prod cont_diff_snd), dsimp [ψ, loop.normalize], apply cont_diff.sub, apply hγ_diff.comp₃ hg.fst'.snd' cont_diff_fst cont_diff_snd.snd, apply cont_diff_average, exact hγ_diff.comp₃ hg.fst'.snd'.fst' cont_diff_fst.fst' cont_diff_snd }, { exact cont_diff_const.mul (π.cont_diff.comp hx) }, end lemma remainder_c0_small_on {K : set E} (hK : is_compact K) (hγ_diff : 𝒞 1 ↿γ) {ε : ℝ} (ε_pos : 0 < ε) : ∀ᶠ N in at_top, ∀ x ∈ K, ∥R N γ x∥ < ε := begin have : ∀ N : ℝ, R N γ = 𝒯 N (loop.diff γ), { intro N, exact remainder_eq π N hγ_diff }, simp_rw (λ N, remainder_eq π N hγ_diff), let g : ℝ → E → loop (E →L[ℝ] F) := λ t, (loop.diff γ), have g_le : ∀ x (t : ℝ), t ≤ 0 → g t x = g 0 x, from λ _ _ _, rfl, have g_ge : ∀ x (t : ℝ), t ≥ 1 → g t x = g 1 x, from λ _ _ _, rfl, have g_cont : continuous ↿g, from (loop.continuous_diff hγ_diff).snd', apply (corrugation.c0_small_on hK g_le g_ge g_cont ε_pos).mono, intros N H x x_in, exact H x x_in 0 end