import topology.algebra.ring import topology.algebra.open_subgroup import ring_theory.subring import ring_theory.ideal_operations import for_mathlib.topological_groups import for_mathlib.topology universes u v local prefix 𝓝:100 := nhds local infixr ` ×ᶠ `:51 := filter.prod variables {A : Type u} {B : Type v} variables [comm_ring A] [topological_space A] [topological_ring A] variables [comm_ring B] [topological_space B] [topological_ring B] open set topological_ring instance subring_has_zero (R : Type u) [comm_ring R] (S : set R) [HS : is_subring S] : has_zero S := ⟨⟨0, is_add_submonoid.zero_mem S⟩⟩ instance topological_subring (A₀ : set A) [is_subring A₀] : topological_ring A₀ := { continuous_neg := continuous_subtype_mk _ $ (continuous_neg A).comp continuous_subtype_val, continuous_add := continuous_subtype_mk _ $ (continuous_subtype_val.comp continuous_fst).add ( continuous_subtype_val.comp continuous_snd), continuous_mul := continuous_subtype_mk _ $ (continuous_subtype_val.comp continuous_fst).mul (continuous_subtype_val.comp continuous_snd) } lemma half_nhds {s : set A} (hs : s ∈ (nhds (0 : A))) : ∃ V ∈ (nhds (0 : A)), ∀ v w ∈ V, v * w ∈ s := begin have : ((λa:A×A, a.1 * a.2) ⁻¹' s) ∈ (nhds ((0, 0) : A × A)) := tendsto_mul (by simpa using hs), rw nhds_prod_eq at this, rcases filter.mem_prod_iff.1 this with ⟨V₁, H₁, V₂, H₂, H⟩, exact ⟨V₁ ∩ V₂, filter.inter_mem_sets H₁ H₂, assume v w ⟨hv, _⟩ ⟨_, hw⟩, @H (v, w) ⟨hv, hw⟩⟩ end -- lemma continuous_mul_left (a : A) : continuous (λ x, a * x) := -- continuous_mul continuous_const continuous_id -- -- lemma continuous_mul_right (a : A) : continuous (λ x, x * a) := -- continuous_mul continuous_id continuous_const lemma is_open_ideal_map_open_embedding {f : A → B} [is_ring_hom f] (emb : open_embedding f) (I : ideal A) (hI : is_open (↑I : set A)) : is_open (↑(I.map f) : set B) := open_add_subgroup.is_open_of_open_add_subgroup ⟨⟨f '' I, emb.is_open_map _ hI, by apply_instance⟩, ideal.subset_span⟩ instance pi_topological_ring {I : Type*} {R : I → Type*} [∀ i, comm_ring (R i)] [∀ i, topological_space (R i)] [h : ∀ i, topological_ring (R i)] : topological_ring (Π (i : I), R i) := { continuous_add := continuous_pi₂ (λ i, (h i).continuous_add), continuous_mul := continuous_pi₂ (λ i, (h i).continuous_mul), continuous_neg := continuous_pi₁ (λ i, (h i).continuous_neg) } section open function filter lemma topological_ring.of_nice_nhds_zero (α : Type u) [ring α] [topological_space α] (hadd : tendsto (uncurry' ((+) : α → α → α)) (𝓝 0 ×ᶠ 𝓝 0) 𝓝 0) (hneg : tendsto (λ x, -x : α → α) 𝓝 0 𝓝 0) (hmul : tendsto (uncurry' ((*) : α → α → α)) (𝓝 0 ×ᶠ 𝓝 0) 𝓝 0) (hmul_left : ∀ (x₀ : α), tendsto (λ x : α, x₀ * x) 𝓝 0 𝓝 0) (hmul_right : ∀ (x₀ : α), tendsto (λ x : α, x * x₀) 𝓝 0 𝓝 0) (hleft : ∀ x₀ : α, 𝓝 x₀ = map (λ x, x₀+x) 𝓝 0) : topological_ring α := begin refine {..topological_add_group.of_nice_nhds_zero α hadd hneg hleft, ..}, rw continuous_iff_continuous_at, rintro ⟨x₀, y₀⟩, rw [continuous_at, nhds_prod_eq, hleft x₀, hleft y₀, hleft (x₀*y₀), filter.prod_map_map_eq, tendsto_map'_iff], suffices : tendsto ((λ (x : α), x + x₀ * y₀) ∘ (λ (p : α × α), p.1 + p.2) ∘ (λ (p : α × α), (p.1*y₀ + x₀*p.2, p.1*p.2))) (𝓝 0 ×ᶠ 𝓝 0) (map (λ (x : α), x + x₀ * y₀) 𝓝 0), { convert this using 1, { ext, simp only [comp_app, mul_add, add_mul], abel }, { simp only [add_comm] } }, refine tendsto_map.comp (hadd.comp (tendsto.prod_mk _ hmul)), { change tendsto ((λ p : α × α, p.1 + p.2) ∘ λ (x : α × α), (x.1 * y₀, x₀ * x.2)) (𝓝 0 ×ᶠ 𝓝 0) 𝓝 0, exact hadd.comp (tendsto.prod_mk ((hmul_right y₀).comp tendsto_fst) ((hmul_left x₀).comp tendsto_snd)) } end end local attribute [instance] pointwise_mul pointwise_add class ring_filter_basis (α : Type u) [ring α] extends add_group_filter_basis α := (mul : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V * V ⊆ U) (mul_left : ∀ (x₀ : α) {U}, U ∈ sets → ∃ V ∈ sets, V ⊆ (λ x, x₀*x) ⁻¹' U) (mul_right : ∀ (x₀ : α) {U}, U ∈ sets → ∃ V ∈ sets, V ⊆ (λ x, x*x₀) ⁻¹' U) namespace ring_filter_basis lemma is_top_ring {α : Type u} [ring α] [t : topological_space α] (b : ring_filter_basis α) (hnhds : ∀ x₀ : α, 𝓝 x₀ = b.to_add_group_filter_basis.N x₀) : topological_ring α := begin let basis := b.to_filter_basis, have hnhds0 : 𝓝 0 = basis.filter, by rw [hnhds, b.to_add_group_filter_basis.N_zero], apply topological_ring.of_nice_nhds_zero, { rw [hnhds0, ← basis.prod_filter, filter_basis.tendsto_both], intros V V_in, rcases add_group_filter_basis.add V_in with ⟨W, W_in, hW⟩, use [set.prod W W, filter_basis.mem_prod_of_mem W_in W_in], rwa [pointwise_add_eq_image, image_subset_iff] at hW }, { rw [hnhds0, basis.tendsto_both], exact b.neg }, { rw [hnhds0, ← basis.prod_filter, filter_basis.tendsto_both], intros V V_in, rcases ring_filter_basis.mul V_in with ⟨W, W_in, hW⟩, use [set.prod W W, filter_basis.mem_prod_of_mem W_in W_in], rwa [pointwise_mul_eq_image, image_subset_iff] at hW }, { simp only [hnhds0, basis.tendsto_both], exact b.mul_left }, { simp only [hnhds0, basis.tendsto_both], exact b.mul_right }, { exact hnhds0.symm ▸ hnhds } end lemma is_topological_ring (α : Type u) [ring α] [t : topological_space α] [b : ring_filter_basis α] (h : t = b.to_add_group_filter_basis.topology) : topological_ring α := begin let nice := b.to_add_group_filter_basis.N_is_nice, apply b.is_top_ring, rw h, intro x₀, exact topological_space.nhds_mk_of_nhds _ _ nice.1 nice.2, end local attribute [instance] add_group_filter_basis.topology --meta instance cut_trace : has_bind tactic := by apply_instance def workaround (α : Type u) [ring α] [ring_filter_basis α] : topological_space α := begin apply add_group_filter_basis.topology, apply_instance, end local attribute [instance] workaround lemma topological_ring (α : Type u) [ring α] [b : ring_filter_basis α] : topological_ring α := is_topological_ring α rfl end ring_filter_basis lemma discrete_top_ring {R : Type*} [ring R] [topological_space R] [discrete_topology R] : topological_ring R := { continuous_mul := continuous_of_discrete_topology, continuous_add := continuous_of_discrete_topology, continuous_neg := continuous_of_discrete_topology }