import tactic.abel import topology.algebra.group import topology.algebra.uniform_ring import ring_theory.subring import for_mathlib.topology import for_mathlib.filter import for_mathlib.data.set.basic import algebra.pointwise /- open filter function universe u class filter_at_one (α : Type u) [group α] := (F : filter α) (one_in : pure 1 ≤ F) -- we could ask instead that Z ≠ ⊥ (mul {} : tendsto (uncurry' ((*) : α → α → α)) (F.prod F) F) (inv {} : tendsto (λ x: α, x⁻¹) F F) (conj {} : ∀ x₀ : α, tendsto (λ x: α, x₀*x*x₀⁻¹) F F). namespace filter_at_one def topology (α : Type u) [group α] [filter_at_one α] : topological_space α := topological_space.mk_of_nhds $ λa, map (λx, a*x) (F α) local attribute [instance] topology lemma topological_group (α : Type u) [group α] [filter_at_one α]: topological_group α := sorry end filter_at_one Using the above setup, we get : filter_at_one.topological_group : ∀ (α : Type u_1) [_inst_1 : group α] [_inst_2 : @filter_at_one α _inst_1], @topological_group α (@filter_at_one.topology α _inst_1 _inst_2) _inst_1 So this lemma (which could be then turned into a local instance) is only about the topology built by `filter_at_one.topology`. It doesn't not say anything about a group endowed by a random topology that happens to satisfies the axioms of filter_at_one. -/ universe u open filter function set topological_space local infixr ` ×ᶠ `:51 := filter.prod local prefix 𝓝:100 := nhds @[to_additive] lemma topological_monoid.of_comm_of_nice_nhds_one (α : Type u) [comm_monoid α] [topological_space α] (hmul : tendsto (uncurry' ((*) : α → α → α)) (𝓝 1 ×ᶠ 𝓝 1) 𝓝 1) (hleft : ∀ x₀ : α, 𝓝 x₀ = map (λ x, x₀*x) 𝓝 1) : topological_monoid α := { continuous_mul := begin rw continuous_iff_continuous_at, rintros ⟨x₀, y₀⟩, have key : (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) = ((λ x, x₀*y₀*x) ∘ (uncurry' (*))), { ext, change x₀ * x.1 * (y₀ * x.2) = x₀ * y₀ * (x.1 * x.2), ac_refl }, calc map (λ (p : α × α), p.1 * p.2) 𝓝 (x₀, y₀) = map (λ (p : α × α), p.1 * p.2) (𝓝 x₀ ×ᶠ 𝓝 y₀) : by rw nhds_prod_eq ... = map (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map] ... = map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw key ... = map (λ x, x₀*y₀*x) (map (uncurry' (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map ... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul ... = 𝓝 (x₀*y₀) : (hleft _).symm end } protected meta def prove_conj : tactic unit := `[ intro x₀, convert continuous_id.continuous_at, simpa [mul_comm, inv_mul_cancel_left]] @[to_additive] lemma topological_group.of_nice_nhds_one (α : Type u) [group α] [topological_space α] (hmul : tendsto (uncurry' ((*) : α → α → α)) ((𝓝 1).prod 𝓝 1) 𝓝 1) (hinv : tendsto (λ x : α, x⁻¹) 𝓝 1 𝓝 1) (hleft : ∀ x₀ : α, 𝓝 x₀ = map (λ x, x₀*x) 𝓝 1) (hconj : ∀ x₀ : α, tendsto (λ x: α, x₀*x*x₀⁻¹) 𝓝 1 𝓝 1 . prove_conj) : topological_group α := { continuous_mul := begin rw continuous_iff_continuous_at, rintros ⟨x₀, y₀⟩, have key : (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) = ((λ x, x₀*y₀*x) ∘ (uncurry' (*)) ∘ ((λ x, y₀⁻¹*x*y₀) ⨯ id)), by { ext, simp [uncurry', prod.map', mul_assoc] }, specialize hconj y₀⁻¹, rw inv_inv at hconj, calc map (λ (p : α × α), p.1 * p.2) 𝓝 (x₀, y₀) = map (λ (p : α × α), p.1 * p.2) (𝓝 x₀ ×ᶠ 𝓝 y₀) : by rw nhds_prod_eq ... = map (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map] ... = map (((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ∘ ((λ x, y₀⁻¹*x*y₀) ⨯ id))((𝓝 1) ×ᶠ (𝓝 1)) : by rw key ... = map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((map (λ x, y₀⁻¹*x*y₀) 𝓝 1) ×ᶠ (𝓝 1)) : by rw [← filter.map_map, filter.map_prod_prod, map_id] ... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((𝓝 1) ×ᶠ (𝓝 1)) : map_mono (filter.prod_mono hconj $ le_refl _) ... = map (λ x, x₀*y₀*x) (map (uncurry' (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map ... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul ... = 𝓝 (x₀*y₀) : (hleft _).symm end, continuous_inv := begin rw continuous_iff_continuous_at, rintros x₀, have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹), by {ext ; simp[mul_assoc] }, calc map (λ x, x⁻¹) (𝓝 x₀) = map (λ x, x⁻¹) (map (λ x, x₀*x) 𝓝 1) : by rw hleft ... = map (λ x, (x₀*x)⁻¹) 𝓝 1 : by rw filter.map_map ... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) 𝓝 1 : by rw key ... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map ... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv ... = map (λ x, x₀⁻¹ * x) (map (λ x, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map ... ≤ map (λ x, x₀⁻¹ * x) 𝓝 1 : map_mono (hconj x₀) ... = 𝓝 x₀⁻¹ : (hleft _).symm end } @[to_additive] lemma topological_group.of_comm_of_nice_nhds_one (α : Type u) [comm_group α] [topological_space α] (hmul : tendsto (uncurry' ((*) : α → α → α)) ((𝓝 1).prod 𝓝 1) 𝓝 1) (hinv : tendsto (λ x : α, x⁻¹) 𝓝 1 𝓝 1) (hleft : ∀ x₀ : α, 𝓝 x₀ = map (λ x, x₀*x) 𝓝 1) : topological_group α := topological_group.of_nice_nhds_one α hmul hinv hleft open set local attribute [instance] pointwise_mul pointwise_add class group_filter_basis (α : Type u) [group α] extends filter_basis α := (one : ∀ {U}, U ∈ sets → (1 : α) ∈ U) (mul : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V * V ⊆ U) (inv : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V ⊆ (λ x, x⁻¹) ⁻¹' U) (conj : ∀ x₀, ∀ U ∈ sets, ∃ V ∈ sets, V ⊆ (λ x, x₀*x*x₀⁻¹) ⁻¹' U) class add_group_filter_basis (α : Type u) [add_group α] extends filter_basis α := (zero : ∀ {U}, U ∈ sets → (0 : α) ∈ U) (add : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V + V ⊆ U) (neg : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V ⊆ (λ x, -x) ⁻¹' U) (conj : ∀ x₀, ∀ U ∈ sets, ∃ V ∈ sets, V ⊆ (λ x, x₀+x-x₀) ⁻¹' U) attribute [to_additive add_group_filter_basis] group_filter_basis attribute [to_additive] group_filter_basis.one attribute [to_additive] group_filter_basis.mul attribute [to_additive] group_filter_basis.inv attribute [to_additive] group_filter_basis.conj attribute [to_additive] group_filter_basis.to_filter_basis /- -- We didn't use class directly because we still want α to be an explicit argument of projections attribute [class] group_filter_basis attribute [class] add_group_filter_basis -/ instance group_filter_basis.has_mem {α : Type*} [group α] : has_mem (set α) (group_filter_basis α) := ⟨λ s f, s ∈ f.sets⟩ instance add_group_filter_basis.has_mem {α : Type*} [add_group α] : has_mem (set α) (add_group_filter_basis α) := ⟨λ s f, s ∈ f.sets⟩ attribute [to_additive] group_filter_basis.has_mem namespace group_filter_basis variables {α : Type*} [group α] @[to_additive] lemma prod_subset_self (f : group_filter_basis α) {U : set α} (h : U ∈ f) : U ⊆ U*U := λ x x_in, (mul_one x) ▸ mul_mem_pointwise_mul x_in $ group_filter_basis.one h /-- The neighborhood function of a `group_filter_basis` -/ @[to_additive] def N (f : group_filter_basis α) : α → filter α := λ x, map (λ y, x*y) f.to_filter_basis.filter @[simp, to_additive] lemma N_one (f : group_filter_basis α) : f.N 1 = f.to_filter_basis.filter := by simpa [N, map_id] @[to_additive] lemma mem_N (f : group_filter_basis α) (x : α) (U : set α) : U ∈ f.N x ↔ ∃ V ∈ f, (λ y, x*y) '' V ⊆ U := by simpa [N, mem_map, filter_basis.mem_filter, image_subset_iff] @[to_additive] lemma mem_N_of_mem (f : group_filter_basis α) (x : α) {U : set α} (h : U ∈ f) : (λ y, x*y) '' U ∈ f.N x := by { rw mem_N, use [U, h] } @[to_additive] lemma N_is_nice (f : group_filter_basis α) : (pure ≤ f.N) ∧ ∀ {a s}, s ∈ f.N a → ∃ t ∈ f.N a, t ⊆ s ∧ ∀ a' ∈ t, s ∈ f.N a' := begin split, { intros x U U_in, rw f.mem_N at U_in, rcases U_in with ⟨V, V_in, H⟩, simpa using H (mem_image_of_mem _ (group_filter_basis.one V_in)) }, { intros x U U_in, rw f.mem_N at U_in, rcases U_in with ⟨V, V_in, H⟩, rcases group_filter_basis.mul V_in with ⟨W, W_in, hW⟩, use [(λ y, x*y) '' W, image_mem_map (filter_basis.mem_filter_of_mem W_in)], split, { rw image_subset_iff at H ⊢, exact subset.trans (subset.trans (f.prod_subset_self W_in) hW) H}, { rintros y ⟨t, tW, rfl⟩, rw f.mem_N, use [W, W_in], apply subset.trans _ H, clear H, rintros z ⟨w, wW, rfl⟩, exact ⟨t*w, hW (mul_mem_pointwise_mul tW wW), by simp [mul_assoc]⟩ } }, end @[to_additive] lemma is_top_group {α : Type u} [group α] (basis : group_filter_basis α) [topological_space α] (hnhds : ∀ x₀ : α, 𝓝 x₀ = basis.N x₀) : topological_group α := begin have hnhds1 : 𝓝 1 = basis.to_filter_basis.filter, by rw [hnhds 1, N_one], apply topological_group.of_nice_nhds_one, { rw [hnhds1, ← basis.to_filter_basis.prod_filter, filter_basis.tendsto_both], intros V V_in, rcases group_filter_basis.mul V_in with ⟨W, W_in, hW⟩, use [set.prod W W, filter_basis.mem_prod_of_mem W_in W_in], rwa [pointwise_mul_eq_image, image_subset_iff] at hW }, { rw [hnhds1, basis.to_filter_basis.tendsto_both], exact basis.inv }, { exact hnhds1.symm ▸ hnhds }, { intro x₀, rw [hnhds1, basis.to_filter_basis.tendsto_both], exact group_filter_basis.conj x₀ } end /-- The topological space structure coming a group filter basis. -/ @[to_additive] def topology {α : Type u} [group α] (basis : group_filter_basis α) : topological_space α := topological_space.mk_of_nhds basis.N /-- The topological space structure coming a group filter basis. Version using tc resolution -/ @[to_additive] def to_topological_space {α : Type u} [group α] [basis : group_filter_basis α] : topological_space α := basis.topology @[to_additive] lemma nhds_eq {α : Type u} [group α] (basis : group_filter_basis α) [t : topological_space α] (h : t = basis.topology) {x₀ : α} : 𝓝 x₀ = basis.N x₀ := by rw [h, nhds_mk_of_nhds _ x₀ basis.N_is_nice.1 basis.N_is_nice.2] @[to_additive] lemma nhds_one_eq {α : Type u} [group α] (basis : group_filter_basis α) [t : topological_space α] (h : t = basis.topology) : 𝓝 (1 : α) = basis.to_filter_basis.filter := by { rw basis.nhds_eq h, simp only [N, one_mul], exact map_id } @[to_additive] lemma mem_nhds {α : Type u} [group α] (basis : group_filter_basis α) [t : topological_space α] (h : t = basis.topology) {x₀ : α} {U : set α} : U ∈ 𝓝 x₀ ↔ ∃ V ∈ basis, V ⊆ (λ x, x₀ * x) ⁻¹' U := begin rw basis.nhds_eq h, exact filter_basis.mem_filter basis.to_filter_basis end @[to_additive] lemma is_topological_group {α : Type u} [group α] (basis : group_filter_basis α) [t : topological_space α] (h : t = basis.topology) : topological_group α := begin apply basis.is_top_group, rw h, exact λ x, nhds_mk_of_nhds _ x basis.N_is_nice.1 basis.N_is_nice.2 end /-- The neighborhood basis on a group coming from a group filter basis -/ @[to_additive] def nhds_basis {α : Type u} [group α] (basis : group_filter_basis α) [t : topological_space α] (h : t = basis.topology) : nhds_basis α := { B := λ x₀, filter_basis.map (λ x, x₀*x) basis.to_filter_basis, is_nhds := λ x₀, by rw [← filter_basis.map_filter, h, nhds_mk_of_nhds _ x₀ basis.N_is_nice.1 basis.N_is_nice.2, N] } local attribute [instance] group_filter_basis.to_topological_space -- The following can be made an instance when needed @[to_additive] def to_nhds_basis {α : Type u} [group α] [basis : group_filter_basis α] : _root_.nhds_basis α := basis.nhds_basis rfl local attribute [instance] group_filter_basis.to_nhds_basis add_group_filter_basis.to_nhds_basis @[to_additive] lemma mem_nhds_basis {α : Type u} [group α] [basis : group_filter_basis α] {s : set α} {x₀ : α} : s ∈ nhds_basis.B x₀ ↔ (λ x, x₀*x) ⁻¹' s ∈ basis.to_filter_basis.sets := begin change s ∈ filter_basis.map (λ x, x₀*x) basis.to_filter_basis ↔ _, rw filter_basis.mem_map, split ; intro h, { rcases h with ⟨U, h, rfl⟩, rw preimage_image_eq, exact h, intros x y, simp }, { use [(λ (x : α), x₀ * x) ⁻¹' s, h], rw image_preimage_eq, intros y, use [x₀⁻¹*y], simp } end end group_filter_basis section variables {G : Type u} [add_comm_group G] def add_group_with_zero_nhd.of_open_add_subgroup (H : set G) [is_add_subgroup H] (t : topological_space H) (h : @topological_add_group H t _) : add_group_with_zero_nhd G := { Z := (nhds (0 : H)).map $ (subtype.val : H → G), zero_Z := calc pure ((0 : H) : G) = map subtype.val (pure 0) : (filter.map_pure _ _).symm ... ≤ _ : map_mono (pure_le_nhds _), sub_Z := begin let δ_G := λ (p : G × G), p.1 - p.2, let δ_H := λ (p : H × H), p.1 - p.2, let ι : H → G := subtype.val, let N := 𝓝 (0 : H), let Z := map subtype.val N, change map δ_G (filter.prod Z Z) ≤ Z, have key₁: map δ_H (𝓝 (0, 0)) ≤ N, { rw [show N = nhds (δ_H (0, 0)), by simp [*]], exact continuous_sub.tendsto _ }, have key₂ : δ_G ∘ ι⨯ι = ι ∘ δ_H, { ext p, change (p.1 : G) - (p.2 : G) = (p.1 - p.2 : G), simp [is_add_subgroup.coe_neg, is_add_submonoid.coe_add] }, calc map δ_G (filter.prod Z Z) = map δ_G (map (ι ⨯ ι) $ filter.prod N N) : by rw prod_map_map_eq;refl ... = map ι (map δ_H $ filter.prod N N) : map_comm key₂ _ ... = map ι (map δ_H $ 𝓝 (0, 0)) : by rw ← nhds_prod_eq ... ≤ map ι N : map_mono key₁ end, ..‹add_comm_group G› } def of_open_add_subgroup {G : Type u} [str : add_comm_group G] (H : set G) [is_add_subgroup H] (t : topological_space H) (h : @topological_add_group H t _) : topological_space G := @add_group_with_zero_nhd.topological_space G (add_group_with_zero_nhd.of_open_add_subgroup H t h) end namespace add_group_with_zero_nhd local attribute [instance] add_group_with_zero_nhd.topological_space local notation `Z` := add_group_with_zero_nhd.Z variables {α : Type*} variables {G : Type*} [add_group_with_zero_nhd G] lemma nhds_eq_comap (g : G) : nhds g = comap (λ g', g' + -g) (Z G) := by rw [← nhds_zero_eq_Z, nhds_translation_add_neg g] end add_group_with_zero_nhd namespace topological_group variables {G : Type*} {H : Type*} variables [group G] [topological_space G] [topological_group G] variables [group H] [topological_space H] [topological_group H] variables (f : G → H) [is_group_hom f] -- TODO when PR'ing to mathlib, make sure to include _right in the name -- of this and nhds_translation_mul_inv @[to_additive] lemma nhds_translation_mul (g : G) : map (λ h, h*g) (nhds 1) = nhds g := begin rw ← nhds_translation_mul_inv g, apply map_eq_comap_of_inverse ; ext ; simp end @[to_additive] lemma nhds_translation_mul_inv_left (g : G) : comap (λ h, g⁻¹*h) (nhds 1) = nhds g := begin refine comap_eq_of_inverse (λ h, g*h) _ _ _, { funext x; simp }, { suffices : tendsto (λ h,g⁻¹*h) (nhds g) (nhds (g⁻¹ * g)), by simpa, exact tendsto_const_nhds.mul tendsto_id }, { suffices : tendsto (λ h, g*h) (nhds 1) (nhds (g*1)), by simpa, exact tendsto_const_nhds.mul tendsto_id } end @[to_additive] lemma nhds_translation_mul_left (g : G) : map (λ h, g*h) (nhds 1) = nhds g := begin rw ← nhds_translation_mul_inv_left g, apply map_eq_comap_of_inverse ; ext ; simp end @[to_additive] lemma continuous_of_continuous_at_one (h : continuous_at f 1) : continuous f := begin replace h : map f (nhds 1) ≤ nhds 1, by rw ← is_group_hom.map_one f ; exact h, rw continuous_iff_continuous_at, intro g, have key : (f ∘ λ (h : G), g * h) = (λ (h : H), (f g) * h) ∘ f, by ext ; simp [is_mul_hom.map_mul f], change map f (nhds g) ≤ nhds (f g), rw [← nhds_translation_mul_left g, ← nhds_translation_mul_left (f g), filter.map_comm key], exact map_mono h end @[to_additive topological_add_group.tendsto_nhds_iff'] lemma tendsto_nhds_iff {α : Type*} (f : α → H) (F : filter α) (h : H) : tendsto f F (nhds h) ↔ ∀ V ∈ nhds (1 : H), {a | f a * h⁻¹ ∈ V} ∈ F := let R := λ h', h' * h⁻¹, N := nhds (1 : H) in calc tendsto f F (nhds h) ↔ map f F ≤ (nhds h) : iff.rfl ... ↔ map f F ≤ comap R N : by rw nhds_translation_mul_inv ... ↔ map R (map f F) ≤ N : map_le_iff_le_comap.symm ... ↔ map (λ a, f a * h⁻¹) F ≤ N : by rw filter.map_map @[to_additive topological_add_group.tendsto_nhds_nhds_iff'] lemma tendsto_nhds_nhds_iff (f : G → H) (g : G) (h : H) : tendsto f (nhds g) (nhds h) ↔ ∀ V ∈ nhds (1 : H), ∃ U ∈ nhds (1 : G), ∀ g', g'*g⁻¹ ∈ U → f g' * h⁻¹ ∈ V := by rw [tendsto_nhds_iff f, ← nhds_translation_mul_inv g] ; exact iff.rfl end topological_group namespace topological_add_group -- `to_additive` generates statements using `g + -h` instead of `g-h`, let's fix that variables {G : Type*} [add_group G] [topological_space G] [topological_add_group G] variables {H : Type*} [add_group H] [topological_space H] [topological_add_group H] lemma tendsto_nhds_iff {α : Type*} (f : α → H) (F : filter α) (h : H) : tendsto f F (nhds h) ↔ ∀ (V : set H), V ∈ nhds (0 : H) → {a : α | f a - h ∈ V} ∈ F := topological_add_group.tendsto_nhds_iff' _ _ _ lemma tendsto_nhds_nhds_iff (f : G → H) (g : G) (h : H) : tendsto f (nhds g) (nhds h) ↔ ∀ V ∈ nhds (0 : H), ∃ U ∈ nhds (0 : G), ∀ g', g' - g ∈ U → f g' - h ∈ V := topological_add_group.tendsto_nhds_nhds_iff' _ _ _ end topological_add_group namespace add_group_with_zero_nhd variables {α : Type*} [add_group_with_zero_nhd α] open filter lemma nhds_eq' (a : α) : nhds a = map (λx, a + x) (Z α) := by convert nhds_eq a ; ext ; simp end add_group_with_zero_nhd section open topological_add_group variables (G : Type u) [add_comm_group G] [topological_space G] [topological_add_group G] local attribute [instance] topological_add_group.to_uniform_space local attribute [instance] topological_add_group_is_uniform lemma topological_add_group.separated_iff_zero_closed : separated G ↔ is_closed ({0} : set G) := begin unfold separated, rw ← closure_eq_iff_is_closed, split ; intro h, { apply subset.antisymm, { intros x x_in, have := group_separation_rel x 0, rw sub_zero at this, rw [← this, h] at x_in, change x = 0 at x_in, simp [x_in] }, { exact subset_closure } }, { ext p, cases p with x y, rw [group_separation_rel x, h, mem_singleton_iff, sub_eq_zero_iff_eq], refl } end lemma topological_add_group.separated_of_zero_sep (H : ∀ x : G, x ≠ 0 → ∃ U ∈ nhds (0 : G), x ∉ U) : separated G:= begin rw topological_add_group.separated_iff_zero_closed, rw [← is_open_compl_iff, is_open_iff_mem_nhds], intros x x_not, have : x ≠ 0, from mem_compl_singleton_iff.mp x_not, rcases H x this with ⟨U, U_in, xU⟩, rw ← nhds_zero_symm G at U_in, rcases U_in with ⟨W, W_in, UW⟩, rw ← nhds_translation_add_neg_left x, use [W, W_in], rw subset_compl_comm, suffices : -x ∉ W, by simp[this], intro h, exact xU (UW h) end lemma topological_add_group.discrete_iff_open_zero {G : Type*} [add_group G] [topological_space G] [topological_add_group G] : discrete_topology G ↔ is_open ({0} : set G) := begin rw discrete_iff_open_singletons, split ; intro h, { exact h 0 }, { intro x, convert (continuous_add_right (-x) : continuous (λ y, y - x)) _ h, ext z, erw [mem_singleton_iff, mem_preimage, mem_singleton_iff, sub_eq_zero_iff_eq] }, end -- Wedhorn Definition 5.31 page 38 definition is_complete_hausdorff : Prop := is_complete (univ : set G) ∧ is_hausdorff G end -- I used to think I would need the next section soon, but I no longer do. -- I keep it because we'll want some form of this in mathlib at some point section top_mul_equiv variables (G : Type*) [group G] [topological_space G] [topological_group G] variables (H : Type*) [group H] [topological_space H] [topological_group H] structure top_mul_equiv extends homeomorph G H := (hom : is_group_hom to_fun) infix ` ≃*ₜ `:50 := top_mul_equiv instance top_mul_equiv.is_group_hom (h : G ≃*ₜ H) : is_group_hom h.to_homeomorph := h.hom end top_mul_equiv namespace top_mul_equiv variables (G : Type*) [group G] [topological_space G] [topological_group G] variables (H : Type*) [group H] [topological_space H] [topological_group H] variables (K : Type*) [group K] [topological_space K] [topological_group K] @[refl] def refl : G ≃*ₜ G := { hom := is_group_hom.id, continuous_to_fun := continuous_id, continuous_inv_fun := continuous_id, ..equiv.refl _} @[symm] def symm (h : G ≃*ₜ H) : H ≃*ₜ G := { hom := is_group_hom.mk' $ λ n₁ n₂, function.injective_of_left_inverse h.left_inv begin rw h.hom.map_mul, unfold equiv.symm, rw [h.right_inv, h.right_inv, h.right_inv], end, continuous_to_fun := h.continuous_inv_fun, continuous_inv_fun := h.continuous_to_fun, ..h.to_equiv.symm} @[trans] def trans (h1 : G ≃*ₜ H) (h2 : H ≃*ₜ K) : (G ≃*ₜ K) := { hom := is_group_hom.comp h1.to_homeomorph.to_equiv.to_fun h2.to_homeomorph.to_equiv.to_fun, continuous_to_fun := h2.continuous_to_fun.comp h1.continuous_to_fun, continuous_inv_fun := h1.continuous_inv_fun.comp h2.continuous_inv_fun, ..equiv.trans h1.to_equiv h2.to_equiv } end top_mul_equiv -- Next secton will move to topology/basic.lean section variables {α : Type*} {β : Type*} [topological_space β] /-- If a function is constant on some set of a proper filter then it converges along this filter -/ lemma exists_limit_of_ultimately_const {φ : α → β} {f : filter α} (hf : f ≠ ⊥) {U : set α} (hU : U ∈ f) (h : ∀ x y ∈ U, φ x = φ y) : ∃ b, tendsto φ f (nhds b) := begin obtain ⟨x₀, x₀_in⟩ : ∃ x₀, x₀ ∈ U, from nonempty_of_mem_sets hf hU, use φ x₀, have : U ⊆ φ ⁻¹' {φ x₀}, { intros x x_in, simp [h x x₀ x_in x₀_in] }, calc map φ f ≤ pure (φ x₀) : by { rw [le_pure_iff, mem_map], exact mem_sets_of_superset hU this} ... ≤ 𝓝 φ x₀ : pure_le_nhds _ end end -- The next section will be used to extend a valuation to the completion of a field (for the -- valuation induced topology). The group Γ will be the value group, G = K^* and H = \hat{K}^* -- (units of the completed field). φ will be the valuation restricted to K^* section open is_group_hom variables {G : Type*} [group G] [topological_space G] [topological_group G] variables {H : Type*} [group H] [topological_space H] [topological_group H] variables {Γ : Type*} [group Γ] [topological_space Γ] [topological_group Γ] [regular_space Γ] variables {ι : G → H} [is_group_hom ι] (dι : dense_inducing ι) variables {φ : G → Γ} [is_group_hom φ] -- misc missing lemma, nothing to do with extensions of stuff lemma mul_right_nhds_one {U : set G} (U_in : U ∈ nhds (1 : G)) (g : G) : (λ x, x*g) '' U ∈ nhds g := begin have l : function.left_inverse (λ (x : G), x * g⁻¹) (λ (x : G), x * g), from λ x, by simp, have r : function.right_inverse (λ (x : G), x * g⁻¹) (λ (x : G), x * g), from λ x, by simp, rw image_eq_preimage_of_inverse l r, have : continuous (λ (x : G), x * g⁻¹), from continuous_id.mul continuous_const, apply this.tendsto g, simpa, end lemma continuous_extend_of_open_kernel (op_ker : is_open (ker φ)) : continuous (dι.extend φ) := begin have : ∃ V, V ∈ nhds (1 : H) ∧ ι ⁻¹' V ⊆ ker φ, { have : ker φ ∈ nhds (1 : G), from mem_nhds_sets op_ker (is_submonoid.one_mem (ker φ)), rw [dι.nhds_eq_comap, mem_comap_sets] at this, rcases this with ⟨V, V_in, hV⟩, rw map_one ι at V_in, use [V, V_in, hV] }, rcases this with ⟨V, V_in, hV⟩, have : ∃ V' ∈ nhds (1 : H), ∀ x y ∈ V', x*y⁻¹ ∈ V, from exists_nhds_split_inv V_in, rcases this with ⟨V', V'_in, hV'⟩, refine dι.continuous_extend _, intro h, have : ι ⁻¹' ((λ x, x*h) '' V') ∈ comap ι (nhds h), from ⟨(λ (x : H), x * h) '' V', mul_right_nhds_one V'_in h, subset.refl _⟩, apply exists_limit_of_ultimately_const dι.comap_nhds_ne_bot this, clear this, intros x y x_in y_in, rw mem_preimage at x_in y_in, rcases x_in with ⟨vₓ, vₓ_in, hx⟩, rcases y_in with ⟨vy, vy_in, hy⟩, change vₓ * h = ι x at hx, change vy * h = ι y at hy, rw inv_iff_ker φ, apply hV, rw [mem_preimage, is_mul_hom.map_mul ι, map_inv ι, ← hx, ← hy, mul_assoc, mul_inv_rev, mul_inv_cancel_left], simp only [hV', *], end end instance discrete_top_group {G : Type*} [group G] [topological_space G] [discrete_topology G] : topological_group G := { continuous_mul := continuous_of_discrete_topology, continuous_inv := continuous_of_discrete_topology } /- section top_group_extend open is_group_hom variables {G : Type*} [group G] [topological_space G] [topological_group G] variables {H : Type*} [group H] [topological_space H] [topological_group H] variables {L : Type*} [group L] [topological_space L] [topological_group L] [t2_space L] variables {ι : G → H} [is_group_hom ι] (de : dense_inducing ι) variables {φ : G → L} [is_group_hom φ] lemma topological_group.extend_is_group_hom (hφ : continuous φ) (h : continuous (de.extend φ)) : is_group_hom (de.extend φ) := sorry -- TODO: Fix is_closed_property2 in mathlib. It has nothing to do with dense embedding. Need -- dense_range.prod etc. /- ⟨begin let Φ := de.extend φ, let P := λ x y : H, Φ (x*y) = Φ x*Φ y, have closed : is_closed { q : H × H | P q.1 q.2 } := have c1 : continuous (λ q : H × H, Φ (q.1 * q.2)), from h.comp continuous_mul', have c2 : continuous (λ q : H × H, Φ q.1 * Φ q.2), from continuous_mul (h.comp continuous_fst) (h.comp continuous_snd), is_closed_eq c1 c2, apply is_closed_property2 de closed, intros x y, dsimp [P, Φ], rw ← is_group_hom.map_mul ι, repeat { rw dense_embedding.extend_e_eq }, rw is_group_hom.map_mul φ end⟩ -/ end top_group_extend -/