import data.equiv.basic algebra.group import order.basic logic.basic -- needed for order stuff import for_mathlib.with_zero import data.equiv.algebra def equiv.with_zero_equiv {α β : Type*} (h : α ≃ β) : (with_zero α) ≃ (with_zero β) := { to_fun := with_zero.map h, inv_fun := with_zero.map h.symm, left_inv := λ x, begin cases x, refl, show some _ = some _, congr, exact h.left_inv x end, right_inv := λ x, begin cases x, refl, show some _ = some _, congr, exact h.right_inv x end, } variables {α : Type*} {β : Type*} {γ : Type*} namespace mul_equiv variables [monoid α] [monoid β] [monoid γ] def to_with_zero_mul_equiv (h : α ≃* β) : (with_zero α) ≃* (with_zero β) := { map_mul' := λ x y, begin cases x; cases y; try { refl}, show some _ = some _, congr, exact @is_mul_hom.map_mul _ _ _ _ h _ x y end, ..h.to_equiv.with_zero_equiv } end mul_equiv -- from here on -- should this go in data.equiv.order? structure le_equiv (α β : Type*) [has_le α] [has_le β] extends α ≃ β := (le_map : ∀ ⦃x y⦄, x ≤ y ↔ to_fun x ≤ to_fun y) infix ` ≃≤ `:50 := le_equiv namespace le_equiv variables (X : Type*) [has_le X] (Y : Type*) [has_le Y] (Z : Type*) [has_le Z] variables {X} {Y} {Z} @[refl] def refl (X : Type*) [has_le X] : X ≃≤ X := { le_map := λ _ _, iff.rfl, ..equiv.refl _} @[symm] def symm (h : X ≃≤ Y) : Y ≃≤ X := { le_map := λ x₁ x₂, begin convert (@le_equiv.le_map _ _ _ _ h (h.to_equiv.symm x₁) (h.to_equiv.symm x₂)).symm, exact (h.right_inv x₁).symm, exact (h.right_inv x₂).symm end, ..h.to_equiv.symm } @[trans] def trans (h1 : X ≃≤ Y) (h2 : Y ≃≤ Z) : X ≃≤ Z := { le_map := λ x₁ x₂, iff.trans (@le_equiv.le_map _ _ _ _ h1 x₁ x₂) (@le_equiv.le_map _ _ _ _ h2 (h1.to_fun x₁) (h1.to_fun x₂)), ..equiv.trans h1.to_equiv h2.to_equiv } end le_equiv def preorder_equiv (α β : Type*) [preorder α] [preorder β] := le_equiv α β structure lt_equiv (α β : Type*) [has_lt α] [has_lt β] extends α ≃ β := (lt_map : ∀ ⦃x y⦄, x < y ↔ to_fun x < to_fun y) infix ` ≃< `:50 := lt_equiv -- iff for ordering -- is this in mathlib? def linear_order_le_iff_of_monotone_injective {α : Type*} {β : Type*} [linear_order α] [linear_order β] {f : α → β} (hf : function.injective f) (h2 : ∀ x y, x ≤ y → f x ≤ f y) : ∀ x y, x ≤ y ↔ f x ≤ f y := λ x y, ⟨h2 x y, λ h3, le_of_not_lt $ λ h4, not_lt_of_le h3 $ lt_of_le_of_ne (h2 y x $ le_of_lt h4) $ λ h5, ne_of_lt h4 $ hf h5⟩ namespace preorder_equiv variables [preorder α] [preorder β] [preorder γ] @[refl] def refl (α : Type*) [preorder α] : α ≃≤ α := { le_map := λ _ _, iff.rfl, ..equiv.refl _} @[symm] def symm (h : α ≃≤ β) : β ≃≤ α := { le_map := λ x y, begin convert (@le_equiv.le_map _ _ _ _ h (h.to_equiv.symm x) (h.to_equiv.symm y)).symm, { exact (h.right_inv x).symm}, { exact (h.right_inv y).symm}, end ..h.to_equiv.symm} @[trans] def trans (h1 : α ≃≤ β) (h2 : β ≃≤ γ) : (α ≃≤ γ) := { le_map := λ x y, iff.trans (@le_equiv.le_map _ _ _ _ h1 x y) (@le_equiv.le_map _ _ _ _ h2 (h1.to_equiv x) (h1.to_equiv y)), ..equiv.trans h1.to_equiv h2.to_equiv } end preorder_equiv def equiv.lt_map_of_le_map {α : Type*} {β : Type*} [preorder α] [preorder β] (he : α ≃ β) (hle : ∀ x y, x ≤ y ↔ he x ≤ he y) : (∀ x y, x < y ↔ he x < he y) := λ x y, by rw [lt_iff_le_not_le, hle x y, hle y x, lt_iff_le_not_le] def equiv.le_map_iff_lt_map {α : Type*} {β : Type*} [partial_order α] [partial_order β] (he : α ≃ β) : (∀ x y, x ≤ y ↔ he x ≤ he y) ↔ (∀ x y, x < y ↔ he x < he y) := ⟨equiv.lt_map_of_le_map he, λ hlt x y, by rw [le_iff_eq_or_lt, le_iff_eq_or_lt]; exact or_congr (by simp) (hlt x y)⟩ def preorder_equiv.to_lt_equiv {α : Type*} {β : Type*} [preorder α] [preorder β] (he : α ≃≤ β) : α ≃< β := {lt_map := he.to_equiv.lt_map_of_le_map he.le_map ..he.to_equiv} def preorder_equiv.to_with_zero_preorder_equiv {α : Type*} {β : Type*} [preorder α] [preorder β] (he : α ≃≤ β) : (with_zero α) ≃≤ (with_zero β) := { le_map := with_zero.map_le he.le_map ..he.to_equiv.with_zero_equiv} -- equiv of top spaces is already done -- it's called homeomorph in topology/constructions.lean