/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Reid Barton -/ import topology.separation /-! # The shrinking lemma In this file we prove a few versions of the shrinking lemma. The lemma says that in a normal topological space a point finite open covering can be “shrunk”: for a point finite open covering `u : ι → set X` there exists a refinement `v : ι → set X` such that `closure (v i) ⊆ u i`. For finite or countable coverings this lemma can be proved without the axiom of choice, see [ncatlab](https://ncatlab.org/nlab/show/shrinking+lemma) for details. We only formalize the most general result that works for any covering but needs the axiom of choice. We prove two versions of the lemma: * `exists_subset_Union_closure_subset` deals with a covering of a closed set in a normal space; * `exists_Union_eq_closure_subset` deals with a covering of the whole space. ## Tags normal space, shrinking lemma -/ open set function open_locale classical noncomputable theory variables {ι X : Type*} [topological_space X] [normal_space X] namespace shrinking_lemma /-- Auxiliary definition for the proof of `shrinking_lemma`. A partial refinement of a covering `⋃ i, u i` of a set `s` is a map `v : ι → set X` and a set `carrier : set ι` such that * `s ⊆ ⋃ i, v i`; * all `v i` are open; * if `i ∈ carrier v`, then `closure (v i) ⊆ u i`; * if `i ∉ carrier`, then `v i = u i`. This type is equipped with the folowing partial order: `v ≤ v'` if `v.carrier ⊆ v'.carrier` and `v i = v' i` for `i ∈ v.carrier`. We will use Zorn's lemma to prove that this type has a maximal element, then show that the maximal element must have `carrier = univ`. -/ @[nolint has_nonempty_instance] -- the trivial refinement needs `u` to be a covering structure partial_refinement (u : ι → set X) (s : set X) := (to_fun : ι → set X) (carrier : set ι) (is_open' : ∀ i, is_open (to_fun i)) (subset_Union' : s ⊆ ⋃ i, to_fun i) (closure_subset' : ∀ i ∈ carrier, closure (to_fun i) ⊆ (u i)) (apply_eq' : ∀ i ∉ carrier, to_fun i = u i) namespace partial_refinement variables {u : ι → set X} {s : set X} instance : has_coe_to_fun (partial_refinement u s) (λ _, ι → set X) := ⟨to_fun⟩ lemma subset_Union (v : partial_refinement u s) : s ⊆ ⋃ i, v i := v.subset_Union' lemma closure_subset (v : partial_refinement u s) {i : ι} (hi : i ∈ v.carrier) : closure (v i) ⊆ (u i) := v.closure_subset' i hi lemma apply_eq (v : partial_refinement u s) {i : ι} (hi : i ∉ v.carrier) : v i = u i := v.apply_eq' i hi protected lemma is_open (v : partial_refinement u s) (i : ι) : is_open (v i) := v.is_open' i protected lemma subset (v : partial_refinement u s) (i : ι) : v i ⊆ u i := if h : i ∈ v.carrier then subset.trans subset_closure (v.closure_subset h) else (v.apply_eq h).le attribute [ext] partial_refinement instance : partial_order (partial_refinement u s) := { le := λ v₁ v₂, v₁.carrier ⊆ v₂.carrier ∧ ∀ i ∈ v₁.carrier, v₁ i = v₂ i, le_refl := λ v, ⟨subset.refl _, λ _ _, rfl⟩, le_trans := λ v₁ v₂ v₃ h₁₂ h₂₃, ⟨subset.trans h₁₂.1 h₂₃.1, λ i hi, (h₁₂.2 i hi).trans (h₂₃.2 i $ h₁₂.1 hi)⟩, le_antisymm := λ v₁ v₂ h₁₂ h₂₁, have hc : v₁.carrier = v₂.carrier, from subset.antisymm h₁₂.1 h₂₁.1, ext _ _ (funext $ λ x, if hx : x ∈ v₁.carrier then h₁₂.2 _ hx else (v₁.apply_eq hx).trans (eq.symm $ v₂.apply_eq $ hc ▸ hx)) hc } /-- If two partial refinements `v₁`, `v₂` belong to a chain (hence, they are comparable) and `i` belongs to the carriers of both partial refinements, then `v₁ i = v₂ i`. -/ lemma apply_eq_of_chain {c : set (partial_refinement u s)} (hc : is_chain (≤) c) {v₁ v₂} (h₁ : v₁ ∈ c) (h₂ : v₂ ∈ c) {i} (hi₁ : i ∈ v₁.carrier) (hi₂ : i ∈ v₂.carrier) : v₁ i = v₂ i := begin wlog hle : v₁ ≤ v₂ := hc.total h₁ h₂ using [v₁ v₂, v₂ v₁], exact hle.2 _ hi₁, end /-- The carrier of the least upper bound of a non-empty chain of partial refinements is the union of their carriers. -/ def chain_Sup_carrier (c : set (partial_refinement u s)) : set ι := ⋃ v ∈ c, carrier v /-- Choice of an element of a nonempty chain of partial refinements. If `i` belongs to one of `carrier v`, `v ∈ c`, then `find c ne i` is one of these partial refinements. -/ def find (c : set (partial_refinement u s)) (ne : c.nonempty) (i : ι) : partial_refinement u s := if hi : ∃ v ∈ c, i ∈ carrier v then hi.some else ne.some lemma find_mem {c : set (partial_refinement u s)} (i : ι) (ne : c.nonempty) : find c ne i ∈ c := by { rw find, split_ifs, exacts [h.some_spec.fst, ne.some_spec] } lemma mem_find_carrier_iff {c : set (partial_refinement u s)} {i : ι} (ne : c.nonempty) : i ∈ (find c ne i).carrier ↔ i ∈ chain_Sup_carrier c := begin rw find, split_ifs, { have : i ∈ h.some.carrier ∧ i ∈ chain_Sup_carrier c, from ⟨h.some_spec.snd, mem_Union₂.2 h⟩, simp only [this] }, { have : i ∉ ne.some.carrier ∧ i ∉ chain_Sup_carrier c, from ⟨λ hi, h ⟨_, ne.some_spec, hi⟩, mt mem_Union₂.1 h⟩, simp only [this] } end lemma find_apply_of_mem {c : set (partial_refinement u s)} (hc : is_chain (≤) c) (ne : c.nonempty) {i v} (hv : v ∈ c) (hi : i ∈ carrier v) : find c ne i i = v i := apply_eq_of_chain hc (find_mem _ _) hv ((mem_find_carrier_iff _).2 $ mem_Union₂.2 ⟨v, hv, hi⟩) hi /-- Least upper bound of a nonempty chain of partial refinements. -/ def chain_Sup (c : set (partial_refinement u s)) (hc : is_chain (≤) c) (ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i) : partial_refinement u s := begin refine ⟨λ i, find c ne i i, chain_Sup_carrier c, λ i, (find _ _ _).is_open i, λ x hxs, mem_Union.2 _, λ i hi, (find c ne i).closure_subset ((mem_find_carrier_iff _).2 hi), λ i hi, (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi)⟩, rcases em (∃ i ∉ chain_Sup_carrier c, x ∈ u i) with ⟨i, hi, hxi⟩|hx, { use i, rwa (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi) }, { simp_rw [not_exists, not_imp_not, chain_Sup_carrier, mem_Union₂] at hx, haveI : nonempty (partial_refinement u s) := ⟨ne.some⟩, choose! v hvc hiv using hx, rcases (hfin x hxs).exists_maximal_wrt v _ (mem_Union.1 (hU hxs)) with ⟨i, hxi : x ∈ u i, hmax : ∀ j, x ∈ u j → v i ≤ v j → v i = v j⟩, rcases mem_Union.1 ((v i).subset_Union hxs) with ⟨j, hj⟩, use j, have hj' : x ∈ u j := (v i).subset _ hj, have : v j ≤ v i, from (hc.total (hvc _ hxi) (hvc _ hj')).elim (λ h, (hmax j hj' h).ge) id, rwa find_apply_of_mem hc ne (hvc _ hxi) (this.1 $ hiv _ hj') } end /-- `chain_Sup hu c hc ne hfin hU` is an upper bound of the chain `c`. -/ lemma le_chain_Sup {c : set (partial_refinement u s)} (hc : is_chain (≤) c) (ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i) {v} (hv : v ∈ c) : v ≤ chain_Sup c hc ne hfin hU := ⟨λ i hi, mem_bUnion hv hi, λ i hi, (find_apply_of_mem hc _ hv hi).symm⟩ /-- If `s` is a closed set, `v` is a partial refinement, and `i` is an index such that `i ∉ v.carrier`, then there exists a partial refinement that is strictly greater than `v`. -/ lemma exists_gt (v : partial_refinement u s) (hs : is_closed s) (i : ι) (hi : i ∉ v.carrier) : ∃ v' : partial_refinement u s, v < v' := begin have I : s ∩ (⋂ j ≠ i, (v j)ᶜ) ⊆ v i, { simp only [subset_def, mem_inter_eq, mem_Inter, and_imp], intros x hxs H, rcases mem_Union.1 (v.subset_Union hxs) with ⟨j, hj⟩, exact (em (j = i)).elim (λ h, h ▸ hj) (λ h, (H j h hj).elim) }, have C : is_closed (s ∩ (⋂ j ≠ i, (v j)ᶜ)), from is_closed.inter hs (is_closed_bInter $ λ _ _, is_closed_compl_iff.2 $ v.is_open _), rcases normal_exists_closure_subset C (v.is_open i) I with ⟨vi, ovi, hvi, cvi⟩, refine ⟨⟨update v i vi, insert i v.carrier, _, _, _, _⟩, _, _⟩, { intro j, by_cases h : j = i; simp [h, ovi, v.is_open] }, { refine λ x hx, mem_Union.2 _, rcases em (∃ j ≠ i, x ∈ v j) with ⟨j, hji, hj⟩|h, { use j, rwa update_noteq hji }, { push_neg at h, use i, rw update_same, exact hvi ⟨hx, mem_bInter h⟩ } }, { rintro j (rfl|hj), { rwa [update_same, ← v.apply_eq hi] }, { rw update_noteq (ne_of_mem_of_not_mem hj hi), exact v.closure_subset hj } }, { intros j hj, rw [mem_insert_iff, not_or_distrib] at hj, rw [update_noteq hj.1, v.apply_eq hj.2] }, { refine ⟨subset_insert _ _, λ j hj, _⟩, exact (update_noteq (ne_of_mem_of_not_mem hj hi) _ _).symm }, { exact λ hle, hi (hle.1 $ mem_insert _ _) } end end partial_refinement end shrinking_lemma open shrinking_lemma variables {u : ι → set X} {s : set X} /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new open cover so that the closure of each new open set is contained in the corresponding original open set. -/ lemma exists_subset_Union_closure_subset (hs : is_closed s) (uo : ∀ i, is_open (u i)) (uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) : ∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i := begin classical, haveI : nonempty (partial_refinement u s) := ⟨⟨u, ∅, uo, us, λ _, false.elim, λ _ _, rfl⟩⟩, have : ∀ c : set (partial_refinement u s), is_chain (≤) c → c.nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub, from λ c hc ne, ⟨partial_refinement.chain_Sup c hc ne uf us, λ v hv, partial_refinement.le_chain_Sup _ _ _ _ hv⟩, rcases zorn_nonempty_partial_order this with ⟨v, hv⟩, suffices : ∀ i, i ∈ v.carrier, from ⟨v, v.subset_Union, λ i, v.is_open _, λ i, v.closure_subset (this i)⟩, contrapose! hv, rcases hv with ⟨i, hi⟩, rcases v.exists_gt hs i hi with ⟨v', hlt⟩, exact ⟨v', hlt.le, hlt.ne'⟩ end /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new closed cover so that each new closed set is contained in the corresponding original open set. See also `exists_subset_Union_closure_subset` for a stronger statement. -/ lemma exists_subset_Union_closed_subset (hs : is_closed s) (uo : ∀ i, is_open (u i)) (uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) : ∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i := let ⟨v, hsv, hvo, hv⟩ := exists_subset_Union_closure_subset hs uo uf us in ⟨λ i, closure (v i), subset.trans hsv (Union_mono $ λ i, subset_closure), λ i, is_closed_closure, hv⟩ /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new open cover so that the closure of each new open set is contained in the corresponding original open set. -/ lemma exists_Union_eq_closure_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite) (uU : (⋃ i, u i) = univ) : ∃ v : ι → set X, Union v = univ ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i := let ⟨v, vU, hv⟩ := exists_subset_Union_closure_subset is_closed_univ uo (λ x _, uf x) uU.ge in ⟨v, univ_subset_iff.1 vU, hv⟩ /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new closed cover so that each of the new closed sets is contained in the corresponding original open set. See also `exists_Union_eq_closure_subset` for a stronger statement. -/ lemma exists_Union_eq_closed_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite) (uU : (⋃ i, u i) = univ) : ∃ v : ι → set X, Union v = univ ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i := let ⟨v, vU, hv⟩ := exists_subset_Union_closed_subset is_closed_univ uo (λ x _, uf x) uU.ge in ⟨v, univ_subset_iff.1 vU, hv⟩