/- Copyright (c) 2021 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import algebra.indicator_function import topology.algebra.group import topology.continuous_on import topology.instances.ennreal /-! # Semicontinuous maps A function `f` from a topological space `α` to an ordered space `β` is lower semicontinuous at a point `x` if, for any `y < f x`, for any `x'` close enough to `x`, one has `f x' > y`. In other words, `f` can jump up, but it can not jump down. Upper semicontinuous functions are defined similarly. This file introduces these notions, and a basic API around them mimicking the API for continuous functions. ## Main definitions and results We introduce 4 definitions related to lower semicontinuity: * `lower_semicontinuous_within_at f s x` * `lower_semicontinuous_at f x` * `lower_semicontinuous_on f s` * `lower_semicontinuous f` We build a basic API using dot notation around these notions, and we prove that * constant functions are lower semicontinuous; * `indicator s (λ _, y)` is lower semicontinuous when `s` is open and `0 ≤ y`, or when `s` is closed and `y ≤ 0`; * continuous functions are lower semicontinuous; * composition with a continuous monotone functions maps lower semicontinuous functions to lower semicontinuous functions. If the function is anti-monotone, it instead maps lower semicontinuous functions to upper semicontinuous functions; * a sum of two (or finitely many) lower semicontinuous functions is lower semicontinuous; * a supremum of a family of lower semicontinuous functions is lower semicontinuous; * An infinite sum of `ℝ≥0∞`-valued lower semicontinuous functions is lower semicontinuous. Similar results are stated and proved for upper semicontinuity. We also prove that a function is continuous if and only if it is both lower and upper semicontinuous. ## Implementation details All the nontrivial results for upper semicontinuous functions are deduced from the corresponding ones for lower semicontinuous functions using `order_dual`. -/ open_locale topological_space big_operators ennreal open set variables {α : Type*} [topological_space α] {β : Type*} [preorder β] {f g : α → β} {x : α} {s t : set α} {y z : β} /-! ### Main definitions -/ /-- A real function `f` is lower semicontinuous at `x` within a set `s` if, for any `ε > 0`, for all `x'` close enough to `x` in `s`, then `f x'` is at least `f x - ε`. We formulate this in a general preordered space, using an arbitrary `y < f x` instead of `f x - ε`. -/ def lower_semicontinuous_within_at (f : α → β) (s : set α) (x : α) := ∀ y < f x, ∀ᶠ x' in 𝓝[s] x, y < f x' /-- A real function `f` is lower semicontinuous on a set `s` if, for any `ε > 0`, for any `x ∈ s`, for all `x'` close enough to `x` in `s`, then `f x'` is at least `f x - ε`. We formulate this in a general preordered space, using an arbitrary `y < f x` instead of `f x - ε`.-/ def lower_semicontinuous_on (f : α → β) (s : set α) := ∀ x ∈ s, lower_semicontinuous_within_at f s x /-- A real function `f` is lower semicontinuous at `x` if, for any `ε > 0`, for all `x'` close enough to `x`, then `f x'` is at least `f x - ε`. We formulate this in a general preordered space, using an arbitrary `y < f x` instead of `f x - ε`. -/ def lower_semicontinuous_at (f : α → β) (x : α) := ∀ y < f x, ∀ᶠ x' in 𝓝 x, y < f x' /-- A real function `f` is lower semicontinuous if, for any `ε > 0`, for any `x`, for all `x'` close enough to `x`, then `f x'` is at least `f x - ε`. We formulate this in a general preordered space, using an arbitrary `y < f x` instead of `f x - ε`. -/ def lower_semicontinuous (f : α → β) := ∀ x, lower_semicontinuous_at f x /-- A real function `f` is upper semicontinuous at `x` within a set `s` if, for any `ε > 0`, for all `x'` close enough to `x` in `s`, then `f x'` is at most `f x + ε`. We formulate this in a general preordered space, using an arbitrary `y > f x` instead of `f x + ε`. -/ def upper_semicontinuous_within_at (f : α → β) (s : set α) (x : α) := ∀ y, f x < y → ∀ᶠ x' in 𝓝[s] x, f x' < y /-- A real function `f` is upper semicontinuous on a set `s` if, for any `ε > 0`, for any `x ∈ s`, for all `x'` close enough to `x` in `s`, then `f x'` is at most `f x + ε`. We formulate this in a general preordered space, using an arbitrary `y > f x` instead of `f x + ε`.-/ def upper_semicontinuous_on (f : α → β) (s : set α) := ∀ x ∈ s, upper_semicontinuous_within_at f s x /-- A real function `f` is upper semicontinuous at `x` if, for any `ε > 0`, for all `x'` close enough to `x`, then `f x'` is at most `f x + ε`. We formulate this in a general preordered space, using an arbitrary `y > f x` instead of `f x + ε`. -/ def upper_semicontinuous_at (f : α → β) (x : α) := ∀ y, f x < y → ∀ᶠ x' in 𝓝 x, f x' < y /-- A real function `f` is upper semicontinuous if, for any `ε > 0`, for any `x`, for all `x'` close enough to `x`, then `f x'` is at most `f x + ε`. We formulate this in a general preordered space, using an arbitrary `y > f x` instead of `f x + ε`.-/ def upper_semicontinuous (f : α → β) := ∀ x, upper_semicontinuous_at f x /-! ### Lower semicontinuous functions -/ /-! #### Basic dot notation interface for lower semicontinuity -/ lemma lower_semicontinuous_within_at.mono (h : lower_semicontinuous_within_at f s x) (hst : t ⊆ s) : lower_semicontinuous_within_at f t x := λ y hy, filter.eventually.filter_mono (nhds_within_mono _ hst) (h y hy) lemma lower_semicontinuous_within_at_univ_iff : lower_semicontinuous_within_at f univ x ↔ lower_semicontinuous_at f x := by simp [lower_semicontinuous_within_at, lower_semicontinuous_at, nhds_within_univ] lemma lower_semicontinuous_at.lower_semicontinuous_within_at (s : set α) (h : lower_semicontinuous_at f x) : lower_semicontinuous_within_at f s x := λ y hy, filter.eventually.filter_mono nhds_within_le_nhds (h y hy) lemma lower_semicontinuous_on.lower_semicontinuous_within_at (h : lower_semicontinuous_on f s) (hx : x ∈ s) : lower_semicontinuous_within_at f s x := h x hx lemma lower_semicontinuous_on.mono (h : lower_semicontinuous_on f s) (hst : t ⊆ s) : lower_semicontinuous_on f t := λ x hx, (h x (hst hx)).mono hst lemma lower_semicontinuous_on_univ_iff : lower_semicontinuous_on f univ ↔ lower_semicontinuous f := by simp [lower_semicontinuous_on, lower_semicontinuous, lower_semicontinuous_within_at_univ_iff] lemma lower_semicontinuous.lower_semicontinuous_at (h : lower_semicontinuous f) (x : α) : lower_semicontinuous_at f x := h x lemma lower_semicontinuous.lower_semicontinuous_within_at (h : lower_semicontinuous f) (s : set α) (x : α) : lower_semicontinuous_within_at f s x := (h x).lower_semicontinuous_within_at s lemma lower_semicontinuous.lower_semicontinuous_on (h : lower_semicontinuous f) (s : set α) : lower_semicontinuous_on f s := λ x hx, h.lower_semicontinuous_within_at s x /-! #### Constants -/ lemma lower_semicontinuous_within_at_const : lower_semicontinuous_within_at (λ x, z) s x := λ y hy, filter.eventually_of_forall (λ x, hy) lemma lower_semicontinuous_at_const : lower_semicontinuous_at (λ x, z) x := λ y hy, filter.eventually_of_forall (λ x, hy) lemma lower_semicontinuous_on_const : lower_semicontinuous_on (λ x, z) s := λ x hx, lower_semicontinuous_within_at_const lemma lower_semicontinuous_const : lower_semicontinuous (λ (x : α), z) := λ x, lower_semicontinuous_at_const /-! #### Indicators -/ section variables [has_zero β] lemma is_open.lower_semicontinuous_indicator (hs : is_open s) (hy : 0 ≤ y) : lower_semicontinuous (indicator s (λ x, y)) := begin assume x z hz, by_cases h : x ∈ s; simp [h] at hz, { filter_upwards [hs.mem_nhds h], simp [hz] { contextual := tt} }, { apply filter.eventually_of_forall (λ x', _), by_cases h' : x' ∈ s; simp [h', hz.trans_le hy, hz] } end lemma is_open.lower_semicontinuous_on_indicator (hs : is_open s) (hy : 0 ≤ y) : lower_semicontinuous_on (indicator s (λ x, y)) t := (hs.lower_semicontinuous_indicator hy).lower_semicontinuous_on t lemma is_open.lower_semicontinuous_at_indicator (hs : is_open s) (hy : 0 ≤ y) : lower_semicontinuous_at (indicator s (λ x, y)) x := (hs.lower_semicontinuous_indicator hy).lower_semicontinuous_at x lemma is_open.lower_semicontinuous_within_at_indicator (hs : is_open s) (hy : 0 ≤ y) : lower_semicontinuous_within_at (indicator s (λ x, y)) t x := (hs.lower_semicontinuous_indicator hy).lower_semicontinuous_within_at t x lemma is_closed.lower_semicontinuous_indicator (hs : is_closed s) (hy : y ≤ 0) : lower_semicontinuous (indicator s (λ x, y)) := begin assume x z hz, by_cases h : x ∈ s; simp [h] at hz, { apply filter.eventually_of_forall (λ x', _), by_cases h' : x' ∈ s; simp [h', hz, hz.trans_le hy], }, { filter_upwards [hs.is_open_compl.mem_nhds h], simp [hz] { contextual := tt } } end lemma is_closed.lower_semicontinuous_on_indicator (hs : is_closed s) (hy : y ≤ 0) : lower_semicontinuous_on (indicator s (λ x, y)) t := (hs.lower_semicontinuous_indicator hy).lower_semicontinuous_on t lemma is_closed.lower_semicontinuous_at_indicator (hs : is_closed s) (hy : y ≤ 0) : lower_semicontinuous_at (indicator s (λ x, y)) x := (hs.lower_semicontinuous_indicator hy).lower_semicontinuous_at x lemma is_closed.lower_semicontinuous_within_at_indicator (hs : is_closed s) (hy : y ≤ 0) : lower_semicontinuous_within_at (indicator s (λ x, y)) t x := (hs.lower_semicontinuous_indicator hy).lower_semicontinuous_within_at t x end /-! #### Relationship with continuity -/ theorem lower_semicontinuous_iff_is_open : lower_semicontinuous f ↔ ∀ y, is_open (f ⁻¹' (Ioi y)) := ⟨λ H y, is_open_iff_mem_nhds.2 (λ x hx, H x y hx), λ H x y y_lt, is_open.mem_nhds (H y) y_lt⟩ lemma lower_semicontinuous.is_open_preimage (hf : lower_semicontinuous f) (y : β) : is_open (f ⁻¹' (Ioi y)) := lower_semicontinuous_iff_is_open.1 hf y section variables {γ : Type*} [linear_order γ] [topological_space γ] [order_topology γ] lemma continuous_within_at.lower_semicontinuous_within_at {f : α → γ} (h : continuous_within_at f s x) : lower_semicontinuous_within_at f s x := λ y hy, h (Ioi_mem_nhds hy) lemma continuous_at.lower_semicontinuous_at {f : α → γ} (h : continuous_at f x) : lower_semicontinuous_at f x := λ y hy, h (Ioi_mem_nhds hy) lemma continuous_on.lower_semicontinuous_on {f : α → γ} (h : continuous_on f s) : lower_semicontinuous_on f s := λ x hx, (h x hx).lower_semicontinuous_within_at lemma continuous.lower_semicontinuous {f : α → γ} (h : continuous f) : lower_semicontinuous f := λ x, h.continuous_at.lower_semicontinuous_at end /-! ### Composition -/ section variables {γ : Type*} [linear_order γ] [topological_space γ] [order_topology γ] variables {δ : Type*} [linear_order δ] [topological_space δ] [order_topology δ] lemma continuous_at.comp_lower_semicontinuous_within_at {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : lower_semicontinuous_within_at f s x) (gmon : monotone g) : lower_semicontinuous_within_at (g ∘ f) s x := begin assume y hy, by_cases h : ∃ l, l < f x, { obtain ⟨z, zlt, hz⟩ : ∃ z < f x, Ioc z (f x) ⊆ g ⁻¹' (Ioi y) := exists_Ioc_subset_of_mem_nhds (hg (Ioi_mem_nhds hy)) h, filter_upwards [hf z zlt] with a ha, calc y < g (min (f x) (f a)) : hz (by simp [zlt, ha, le_refl]) ... ≤ g (f a) : gmon (min_le_right _ _) }, { simp only [not_exists, not_lt] at h, exact filter.eventually_of_forall (λ a, hy.trans_le (gmon (h (f a)))) } end lemma continuous_at.comp_lower_semicontinuous_at {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : lower_semicontinuous_at f x) (gmon : monotone g) : lower_semicontinuous_at (g ∘ f) x := begin simp only [← lower_semicontinuous_within_at_univ_iff] at hf ⊢, exact hg.comp_lower_semicontinuous_within_at hf gmon end lemma continuous.comp_lower_semicontinuous_on {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : lower_semicontinuous_on f s) (gmon : monotone g) : lower_semicontinuous_on (g ∘ f) s := λ x hx, (hg.continuous_at).comp_lower_semicontinuous_within_at (hf x hx) gmon lemma continuous.comp_lower_semicontinuous {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : lower_semicontinuous f) (gmon : monotone g) : lower_semicontinuous (g ∘ f) := λ x, (hg.continuous_at).comp_lower_semicontinuous_at (hf x) gmon lemma continuous_at.comp_lower_semicontinuous_within_at_antitone {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : lower_semicontinuous_within_at f s x) (gmon : antitone g) : upper_semicontinuous_within_at (g ∘ f) s x := @continuous_at.comp_lower_semicontinuous_within_at α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon lemma continuous_at.comp_lower_semicontinuous_at_antitone {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : lower_semicontinuous_at f x) (gmon : antitone g) : upper_semicontinuous_at (g ∘ f) x := @continuous_at.comp_lower_semicontinuous_at α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon lemma continuous.comp_lower_semicontinuous_on_antitone {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : lower_semicontinuous_on f s) (gmon : antitone g) : upper_semicontinuous_on (g ∘ f) s := λ x hx, (hg.continuous_at).comp_lower_semicontinuous_within_at_antitone (hf x hx) gmon lemma continuous.comp_lower_semicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : lower_semicontinuous f) (gmon : antitone g) : upper_semicontinuous (g ∘ f) := λ x, (hg.continuous_at).comp_lower_semicontinuous_at_antitone (hf x) gmon end /-! #### Addition -/ section variables {ι : Type*} {γ : Type*} [linear_ordered_add_comm_monoid γ] [topological_space γ] [order_topology γ] /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma lower_semicontinuous_within_at.add' {f g : α → γ} (hf : lower_semicontinuous_within_at f s x) (hg : lower_semicontinuous_within_at g s x) (hcont : continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : lower_semicontinuous_within_at (λ z, f z + g z) s x := begin assume y hy, obtain ⟨u, v, u_open, xu, v_open, xv, h⟩ : ∃ (u v : set γ), is_open u ∧ f x ∈ u ∧ is_open v ∧ g x ∈ v ∧ u ×ˢ v ⊆ {p : γ × γ | y < p.fst + p.snd} := mem_nhds_prod_iff'.1 (hcont (is_open_Ioi.mem_nhds hy)), by_cases hx₁ : ∃ l, l < f x, { obtain ⟨z₁, z₁lt, h₁⟩ : ∃ z₁ < f x, Ioc z₁ (f x) ⊆ u := exists_Ioc_subset_of_mem_nhds (u_open.mem_nhds xu) hx₁, by_cases hx₂ : ∃ l, l < g x, { obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v := exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂, filter_upwards [hf z₁ z₁lt, hg z₂ z₂lt] with z h₁z h₂z, have A1 : min (f z) (f x) ∈ u, { by_cases H : f z ≤ f x, { simp [H], exact h₁ ⟨h₁z, H⟩ }, { simp [le_of_not_le H], exact h₁ ⟨z₁lt, le_rfl⟩, } }, have A2 : min (g z) (g x) ∈ v, { by_cases H : g z ≤ g x, { simp [H], exact h₂ ⟨h₂z, H⟩ }, { simp [le_of_not_le H], exact h₂ ⟨z₂lt, le_rfl⟩, } }, have : (min (f z) (f x), min (g z) (g x)) ∈ u ×ˢ v := ⟨A1, A2⟩, calc y < min (f z) (f x) + min (g z) (g x) : h this ... ≤ f z + g z : add_le_add (min_le_left _ _) (min_le_left _ _) }, { simp only [not_exists, not_lt] at hx₂, filter_upwards [hf z₁ z₁lt] with z h₁z, have A1 : min (f z) (f x) ∈ u, { by_cases H : f z ≤ f x, { simp [H], exact h₁ ⟨h₁z, H⟩ }, { simp [le_of_not_le H], exact h₁ ⟨z₁lt, le_rfl⟩, } }, have : (min (f z) (f x), g x) ∈ u ×ˢ v := ⟨A1, xv⟩, calc y < min (f z) (f x) + g x : h this ... ≤ f z + g z : add_le_add (min_le_left _ _) (hx₂ (g z)) } }, { simp only [not_exists, not_lt] at hx₁, by_cases hx₂ : ∃ l, l < g x, { obtain ⟨z₂, z₂lt, h₂⟩ : ∃ z₂ < g x, Ioc z₂ (g x) ⊆ v := exists_Ioc_subset_of_mem_nhds (v_open.mem_nhds xv) hx₂, filter_upwards [hg z₂ z₂lt] with z h₂z, have A2 : min (g z) (g x) ∈ v, { by_cases H : g z ≤ g x, { simp [H], exact h₂ ⟨h₂z, H⟩ }, { simp [le_of_not_le H], exact h₂ ⟨z₂lt, le_rfl⟩, } }, have : (f x, min (g z) (g x)) ∈ u ×ˢ v := ⟨xu, A2⟩, calc y < f x + min (g z) (g x) : h this ... ≤ f z + g z : add_le_add (hx₁ (f z)) (min_le_left _ _) }, { simp only [not_exists, not_lt] at hx₁ hx₂, apply filter.eventually_of_forall, assume z, have : (f x, g x) ∈ u ×ˢ v := ⟨xu, xv⟩, calc y < f x + g x : h this ... ≤ f z + g z : add_le_add (hx₁ (f z)) (hx₂ (g z)) } }, end /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma lower_semicontinuous_at.add' {f g : α → γ} (hf : lower_semicontinuous_at f x) (hg : lower_semicontinuous_at g x) (hcont : continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : lower_semicontinuous_at (λ z, f z + g z) x := by { simp_rw [← lower_semicontinuous_within_at_univ_iff] at *, exact hf.add' hg hcont } /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma lower_semicontinuous_on.add' {f g : α → γ} (hf : lower_semicontinuous_on f s) (hg : lower_semicontinuous_on g s) (hcont : ∀ x ∈ s, continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : lower_semicontinuous_on (λ z, f z + g z) s := λ x hx, (hf x hx).add' (hg x hx) (hcont x hx) /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma lower_semicontinuous.add' {f g : α → γ} (hf : lower_semicontinuous f) (hg : lower_semicontinuous g) (hcont : ∀ x, continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : lower_semicontinuous (λ z, f z + g z) := λ x, (hf x).add' (hg x) (hcont x) variable [has_continuous_add γ] /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma lower_semicontinuous_within_at.add {f g : α → γ} (hf : lower_semicontinuous_within_at f s x) (hg : lower_semicontinuous_within_at g s x) : lower_semicontinuous_within_at (λ z, f z + g z) s x := hf.add' hg continuous_add.continuous_at /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma lower_semicontinuous_at.add {f g : α → γ} (hf : lower_semicontinuous_at f x) (hg : lower_semicontinuous_at g x) : lower_semicontinuous_at (λ z, f z + g z) x := hf.add' hg continuous_add.continuous_at /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma lower_semicontinuous_on.add {f g : α → γ} (hf : lower_semicontinuous_on f s) (hg : lower_semicontinuous_on g s) : lower_semicontinuous_on (λ z, f z + g z) s := hf.add' hg (λ x hx, continuous_add.continuous_at) /-- The sum of two lower semicontinuous functions is lower semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma lower_semicontinuous.add {f g : α → γ} (hf : lower_semicontinuous f) (hg : lower_semicontinuous g) : lower_semicontinuous (λ z, f z + g z) := hf.add' hg (λ x, continuous_add.continuous_at) lemma lower_semicontinuous_within_at_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, lower_semicontinuous_within_at (f i) s x) : lower_semicontinuous_within_at (λ z, (∑ i in a, f i z)) s x := begin classical, induction a using finset.induction_on with i a ia IH generalizing ha, { exact lower_semicontinuous_within_at_const }, { simp only [ia, finset.sum_insert, not_false_iff], exact lower_semicontinuous_within_at.add (ha _ (finset.mem_insert_self i a)) (IH (λ j ja, ha j (finset.mem_insert_of_mem ja))) } end lemma lower_semicontinuous_at_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, lower_semicontinuous_at (f i) x) : lower_semicontinuous_at (λ z, (∑ i in a, f i z)) x := begin simp_rw [← lower_semicontinuous_within_at_univ_iff] at *, exact lower_semicontinuous_within_at_sum ha end lemma lower_semicontinuous_on_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, lower_semicontinuous_on (f i) s) : lower_semicontinuous_on (λ z, (∑ i in a, f i z)) s := λ x hx, lower_semicontinuous_within_at_sum (λ i hi, ha i hi x hx) lemma lower_semicontinuous_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, lower_semicontinuous (f i)) : lower_semicontinuous (λ z, (∑ i in a, f i z)) := λ x, lower_semicontinuous_at_sum (λ i hi, ha i hi x) end /-! #### Supremum -/ section variables {ι : Sort*} {δ : Type*} [complete_linear_order δ] lemma lower_semicontinuous_within_at_supr {f : ι → α → δ} (h : ∀ i, lower_semicontinuous_within_at (f i) s x) : lower_semicontinuous_within_at (λ x', ⨆ i, f i x') s x := begin assume y hy, rcases lt_supr_iff.1 hy with ⟨i, hi⟩, filter_upwards [h i y hi] with _ hx' using lt_supr_iff.2 ⟨i, hx'⟩, end lemma lower_semicontinuous_within_at_bsupr {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, lower_semicontinuous_within_at (f i hi) s x) : lower_semicontinuous_within_at (λ x', ⨆ i hi, f i hi x') s x := lower_semicontinuous_within_at_supr $ λ i, lower_semicontinuous_within_at_supr $ λ hi, h i hi lemma lower_semicontinuous_at_supr {f : ι → α → δ} (h : ∀ i, lower_semicontinuous_at (f i) x) : lower_semicontinuous_at (λ x', ⨆ i, f i x') x := begin simp_rw [← lower_semicontinuous_within_at_univ_iff] at *, exact lower_semicontinuous_within_at_supr h end lemma lower_semicontinuous_at_bsupr {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, lower_semicontinuous_at (f i hi) x) : lower_semicontinuous_at (λ x', ⨆ i hi, f i hi x') x := lower_semicontinuous_at_supr $ λ i, lower_semicontinuous_at_supr $ λ hi, h i hi lemma lower_semicontinuous_on_supr {f : ι → α → δ} (h : ∀ i, lower_semicontinuous_on (f i) s) : lower_semicontinuous_on (λ x', ⨆ i, f i x') s := λ x hx, lower_semicontinuous_within_at_supr (λ i, h i x hx) lemma lower_semicontinuous_on_bsupr {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, lower_semicontinuous_on (f i hi) s) : lower_semicontinuous_on (λ x', ⨆ i hi, f i hi x') s := lower_semicontinuous_on_supr $ λ i, lower_semicontinuous_on_supr $ λ hi, h i hi lemma lower_semicontinuous_supr {f : ι → α → δ} (h : ∀ i, lower_semicontinuous (f i)) : lower_semicontinuous (λ x', ⨆ i, f i x') := λ x, lower_semicontinuous_at_supr (λ i, h i x) lemma lower_semicontinuous_bsupr {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, lower_semicontinuous (f i hi)) : lower_semicontinuous (λ x', ⨆ i hi, f i hi x') := lower_semicontinuous_supr $ λ i, lower_semicontinuous_supr $ λ hi, h i hi end /-! #### Infinite sums -/ section variables {ι : Type*} lemma lower_semicontinuous_within_at_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, lower_semicontinuous_within_at (f i) s x) : lower_semicontinuous_within_at (λ x', ∑' i, f i x') s x := begin simp_rw ennreal.tsum_eq_supr_sum, apply lower_semicontinuous_within_at_supr (λ b, _), exact lower_semicontinuous_within_at_sum (λ i hi, h i), end lemma lower_semicontinuous_at_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, lower_semicontinuous_at (f i) x) : lower_semicontinuous_at (λ x', ∑' i, f i x') x := begin simp_rw [← lower_semicontinuous_within_at_univ_iff] at *, exact lower_semicontinuous_within_at_tsum h end lemma lower_semicontinuous_on_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, lower_semicontinuous_on (f i) s) : lower_semicontinuous_on (λ x', ∑' i, f i x') s := λ x hx, lower_semicontinuous_within_at_tsum (λ i, h i x hx) lemma lower_semicontinuous_tsum {f : ι → α → ℝ≥0∞} (h : ∀ i, lower_semicontinuous (f i)) : lower_semicontinuous (λ x', ∑' i, f i x') := λ x, lower_semicontinuous_at_tsum (λ i, h i x) end /-! ### Upper semicontinuous functions -/ /-! #### Basic dot notation interface for upper semicontinuity -/ lemma upper_semicontinuous_within_at.mono (h : upper_semicontinuous_within_at f s x) (hst : t ⊆ s) : upper_semicontinuous_within_at f t x := λ y hy, filter.eventually.filter_mono (nhds_within_mono _ hst) (h y hy) lemma upper_semicontinuous_within_at_univ_iff : upper_semicontinuous_within_at f univ x ↔ upper_semicontinuous_at f x := by simp [upper_semicontinuous_within_at, upper_semicontinuous_at, nhds_within_univ] lemma upper_semicontinuous_at.upper_semicontinuous_within_at (s : set α) (h : upper_semicontinuous_at f x) : upper_semicontinuous_within_at f s x := λ y hy, filter.eventually.filter_mono nhds_within_le_nhds (h y hy) lemma upper_semicontinuous_on.upper_semicontinuous_within_at (h : upper_semicontinuous_on f s) (hx : x ∈ s) : upper_semicontinuous_within_at f s x := h x hx lemma upper_semicontinuous_on.mono (h : upper_semicontinuous_on f s) (hst : t ⊆ s) : upper_semicontinuous_on f t := λ x hx, (h x (hst hx)).mono hst lemma upper_semicontinuous_on_univ_iff : upper_semicontinuous_on f univ ↔ upper_semicontinuous f := by simp [upper_semicontinuous_on, upper_semicontinuous, upper_semicontinuous_within_at_univ_iff] lemma upper_semicontinuous.upper_semicontinuous_at (h : upper_semicontinuous f) (x : α) : upper_semicontinuous_at f x := h x lemma upper_semicontinuous.upper_semicontinuous_within_at (h : upper_semicontinuous f) (s : set α) (x : α) : upper_semicontinuous_within_at f s x := (h x).upper_semicontinuous_within_at s lemma upper_semicontinuous.upper_semicontinuous_on (h : upper_semicontinuous f) (s : set α) : upper_semicontinuous_on f s := λ x hx, h.upper_semicontinuous_within_at s x /-! #### Constants -/ lemma upper_semicontinuous_within_at_const : upper_semicontinuous_within_at (λ x, z) s x := λ y hy, filter.eventually_of_forall (λ x, hy) lemma upper_semicontinuous_at_const : upper_semicontinuous_at (λ x, z) x := λ y hy, filter.eventually_of_forall (λ x, hy) lemma upper_semicontinuous_on_const : upper_semicontinuous_on (λ x, z) s := λ x hx, upper_semicontinuous_within_at_const lemma upper_semicontinuous_const : upper_semicontinuous (λ (x : α), z) := λ x, upper_semicontinuous_at_const /-! #### Indicators -/ section variables [has_zero β] lemma is_open.upper_semicontinuous_indicator (hs : is_open s) (hy : y ≤ 0) : upper_semicontinuous (indicator s (λ x, y)) := @is_open.lower_semicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy lemma is_open.upper_semicontinuous_on_indicator (hs : is_open s) (hy : y ≤ 0) : upper_semicontinuous_on (indicator s (λ x, y)) t := (hs.upper_semicontinuous_indicator hy).upper_semicontinuous_on t lemma is_open.upper_semicontinuous_at_indicator (hs : is_open s) (hy : y ≤ 0) : upper_semicontinuous_at (indicator s (λ x, y)) x := (hs.upper_semicontinuous_indicator hy).upper_semicontinuous_at x lemma is_open.upper_semicontinuous_within_at_indicator (hs : is_open s) (hy : y ≤ 0) : upper_semicontinuous_within_at (indicator s (λ x, y)) t x := (hs.upper_semicontinuous_indicator hy).upper_semicontinuous_within_at t x lemma is_closed.upper_semicontinuous_indicator (hs : is_closed s) (hy : 0 ≤ y) : upper_semicontinuous (indicator s (λ x, y)) := @is_closed.lower_semicontinuous_indicator α _ βᵒᵈ _ s y _ hs hy lemma is_closed.upper_semicontinuous_on_indicator (hs : is_closed s) (hy : 0 ≤ y) : upper_semicontinuous_on (indicator s (λ x, y)) t := (hs.upper_semicontinuous_indicator hy).upper_semicontinuous_on t lemma is_closed.upper_semicontinuous_at_indicator (hs : is_closed s) (hy : 0 ≤ y) : upper_semicontinuous_at (indicator s (λ x, y)) x := (hs.upper_semicontinuous_indicator hy).upper_semicontinuous_at x lemma is_closed.upper_semicontinuous_within_at_indicator (hs : is_closed s) (hy : 0 ≤ y) : upper_semicontinuous_within_at (indicator s (λ x, y)) t x := (hs.upper_semicontinuous_indicator hy).upper_semicontinuous_within_at t x end /-! #### Relationship with continuity -/ theorem upper_semicontinuous_iff_is_open : upper_semicontinuous f ↔ ∀ y, is_open (f ⁻¹' (Iio y)) := ⟨λ H y, is_open_iff_mem_nhds.2 (λ x hx, H x y hx), λ H x y y_lt, is_open.mem_nhds (H y) y_lt⟩ lemma upper_semicontinuous.is_open_preimage (hf : upper_semicontinuous f) (y : β) : is_open (f ⁻¹' (Iio y)) := upper_semicontinuous_iff_is_open.1 hf y section variables {γ : Type*} [linear_order γ] [topological_space γ] [order_topology γ] lemma continuous_within_at.upper_semicontinuous_within_at {f : α → γ} (h : continuous_within_at f s x) : upper_semicontinuous_within_at f s x := λ y hy, h (Iio_mem_nhds hy) lemma continuous_at.upper_semicontinuous_at {f : α → γ} (h : continuous_at f x) : upper_semicontinuous_at f x := λ y hy, h (Iio_mem_nhds hy) lemma continuous_on.upper_semicontinuous_on {f : α → γ} (h : continuous_on f s) : upper_semicontinuous_on f s := λ x hx, (h x hx).upper_semicontinuous_within_at lemma continuous.upper_semicontinuous {f : α → γ} (h : continuous f) : upper_semicontinuous f := λ x, h.continuous_at.upper_semicontinuous_at end /-! ### Composition -/ section variables {γ : Type*} [linear_order γ] [topological_space γ] [order_topology γ] variables {δ : Type*} [linear_order δ] [topological_space δ] [order_topology δ] lemma continuous_at.comp_upper_semicontinuous_within_at {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : upper_semicontinuous_within_at f s x) (gmon : monotone g) : upper_semicontinuous_within_at (g ∘ f) s x := @continuous_at.comp_lower_semicontinuous_within_at α _ x s γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual lemma continuous_at.comp_upper_semicontinuous_at {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : upper_semicontinuous_at f x) (gmon : monotone g) : upper_semicontinuous_at (g ∘ f) x := @continuous_at.comp_lower_semicontinuous_at α _ x γᵒᵈ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon.dual lemma continuous.comp_upper_semicontinuous_on {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : upper_semicontinuous_on f s) (gmon : monotone g) : upper_semicontinuous_on (g ∘ f) s := λ x hx, (hg.continuous_at).comp_upper_semicontinuous_within_at (hf x hx) gmon lemma continuous.comp_upper_semicontinuous {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : upper_semicontinuous f) (gmon : monotone g) : upper_semicontinuous (g ∘ f) := λ x, (hg.continuous_at).comp_upper_semicontinuous_at (hf x) gmon lemma continuous_at.comp_upper_semicontinuous_within_at_antitone {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : upper_semicontinuous_within_at f s x) (gmon : antitone g) : lower_semicontinuous_within_at (g ∘ f) s x := @continuous_at.comp_upper_semicontinuous_within_at α _ x s γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon lemma continuous_at.comp_upper_semicontinuous_at_antitone {g : γ → δ} {f : α → γ} (hg : continuous_at g (f x)) (hf : upper_semicontinuous_at f x) (gmon : antitone g) : lower_semicontinuous_at (g ∘ f) x := @continuous_at.comp_upper_semicontinuous_at α _ x γ _ _ _ δᵒᵈ _ _ _ g f hg hf gmon lemma continuous.comp_upper_semicontinuous_on_antitone {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : upper_semicontinuous_on f s) (gmon : antitone g) : lower_semicontinuous_on (g ∘ f) s := λ x hx, (hg.continuous_at).comp_upper_semicontinuous_within_at_antitone (hf x hx) gmon lemma continuous.comp_upper_semicontinuous_antitone {g : γ → δ} {f : α → γ} (hg : continuous g) (hf : upper_semicontinuous f) (gmon : antitone g) : lower_semicontinuous (g ∘ f) := λ x, (hg.continuous_at).comp_upper_semicontinuous_at_antitone (hf x) gmon end /-! #### Addition -/ section variables {ι : Type*} {γ : Type*} [linear_ordered_add_comm_monoid γ] [topological_space γ] [order_topology γ] /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma upper_semicontinuous_within_at.add' {f g : α → γ} (hf : upper_semicontinuous_within_at f s x) (hg : upper_semicontinuous_within_at g s x) (hcont : continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : upper_semicontinuous_within_at (λ z, f z + g z) s x := @lower_semicontinuous_within_at.add' α _ x s γᵒᵈ _ _ _ _ _ hf hg hcont /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma upper_semicontinuous_at.add' {f g : α → γ} (hf : upper_semicontinuous_at f x) (hg : upper_semicontinuous_at g x) (hcont : continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : upper_semicontinuous_at (λ z, f z + g z) x := by { simp_rw [← upper_semicontinuous_within_at_univ_iff] at *, exact hf.add' hg hcont } /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma upper_semicontinuous_on.add' {f g : α → γ} (hf : upper_semicontinuous_on f s) (hg : upper_semicontinuous_on g s) (hcont : ∀ x ∈ s, continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : upper_semicontinuous_on (λ z, f z + g z) s := λ x hx, (hf x hx).add' (hg x hx) (hcont x hx) /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with an explicit continuity assumption on addition, for application to `ereal`. The unprimed version of the lemma uses `[has_continuous_add]`. -/ lemma upper_semicontinuous.add' {f g : α → γ} (hf : upper_semicontinuous f) (hg : upper_semicontinuous g) (hcont : ∀ x, continuous_at (λ (p : γ × γ), p.1 + p.2) (f x, g x)) : upper_semicontinuous (λ z, f z + g z) := λ x, (hf x).add' (hg x) (hcont x) variable [has_continuous_add γ] /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma upper_semicontinuous_within_at.add {f g : α → γ} (hf : upper_semicontinuous_within_at f s x) (hg : upper_semicontinuous_within_at g s x) : upper_semicontinuous_within_at (λ z, f z + g z) s x := hf.add' hg continuous_add.continuous_at /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma upper_semicontinuous_at.add {f g : α → γ} (hf : upper_semicontinuous_at f x) (hg : upper_semicontinuous_at g x) : upper_semicontinuous_at (λ z, f z + g z) x := hf.add' hg continuous_add.continuous_at /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma upper_semicontinuous_on.add {f g : α → γ} (hf : upper_semicontinuous_on f s) (hg : upper_semicontinuous_on g s) : upper_semicontinuous_on (λ z, f z + g z) s := hf.add' hg (λ x hx, continuous_add.continuous_at) /-- The sum of two upper semicontinuous functions is upper semicontinuous. Formulated with `[has_continuous_add]`. The primed version of the lemma uses an explicit continuity assumption on addition, for application to `ereal`. -/ lemma upper_semicontinuous.add {f g : α → γ} (hf : upper_semicontinuous f) (hg : upper_semicontinuous g) : upper_semicontinuous (λ z, f z + g z) := hf.add' hg (λ x, continuous_add.continuous_at) lemma upper_semicontinuous_within_at_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, upper_semicontinuous_within_at (f i) s x) : upper_semicontinuous_within_at (λ z, (∑ i in a, f i z)) s x := @lower_semicontinuous_within_at_sum α _ x s ι γᵒᵈ _ _ _ _ f a ha lemma upper_semicontinuous_at_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, upper_semicontinuous_at (f i) x) : upper_semicontinuous_at (λ z, (∑ i in a, f i z)) x := begin simp_rw [← upper_semicontinuous_within_at_univ_iff] at *, exact upper_semicontinuous_within_at_sum ha end lemma upper_semicontinuous_on_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, upper_semicontinuous_on (f i) s) : upper_semicontinuous_on (λ z, (∑ i in a, f i z)) s := λ x hx, upper_semicontinuous_within_at_sum (λ i hi, ha i hi x hx) lemma upper_semicontinuous_sum {f : ι → α → γ} {a : finset ι} (ha : ∀ i ∈ a, upper_semicontinuous (f i)) : upper_semicontinuous (λ z, (∑ i in a, f i z)) := λ x, upper_semicontinuous_at_sum (λ i hi, ha i hi x) end /-! #### Infimum -/ section variables {ι : Sort*} {δ : Type*} [complete_linear_order δ] lemma upper_semicontinuous_within_at_infi {f : ι → α → δ} (h : ∀ i, upper_semicontinuous_within_at (f i) s x) : upper_semicontinuous_within_at (λ x', ⨅ i, f i x') s x := @lower_semicontinuous_within_at_supr α _ x s ι δᵒᵈ _ f h lemma upper_semicontinuous_within_at_binfi {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, upper_semicontinuous_within_at (f i hi) s x) : upper_semicontinuous_within_at (λ x', ⨅ i hi, f i hi x') s x := upper_semicontinuous_within_at_infi $ λ i, upper_semicontinuous_within_at_infi $ λ hi, h i hi lemma upper_semicontinuous_at_infi {f : ι → α → δ} (h : ∀ i, upper_semicontinuous_at (f i) x) : upper_semicontinuous_at (λ x', ⨅ i, f i x') x := @lower_semicontinuous_at_supr α _ x ι δᵒᵈ _ f h lemma upper_semicontinuous_at_binfi {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, upper_semicontinuous_at (f i hi) x) : upper_semicontinuous_at (λ x', ⨅ i hi, f i hi x') x := upper_semicontinuous_at_infi $ λ i, upper_semicontinuous_at_infi $ λ hi, h i hi lemma upper_semicontinuous_on_infi {f : ι → α → δ} (h : ∀ i, upper_semicontinuous_on (f i) s) : upper_semicontinuous_on (λ x', ⨅ i, f i x') s := λ x hx, upper_semicontinuous_within_at_infi (λ i, h i x hx) lemma upper_semicontinuous_on_binfi {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, upper_semicontinuous_on (f i hi) s) : upper_semicontinuous_on (λ x', ⨅ i hi, f i hi x') s := upper_semicontinuous_on_infi $ λ i, upper_semicontinuous_on_infi $ λ hi, h i hi lemma upper_semicontinuous_infi {f : ι → α → δ} (h : ∀ i, upper_semicontinuous (f i)) : upper_semicontinuous (λ x', ⨅ i, f i x') := λ x, upper_semicontinuous_at_infi (λ i, h i x) lemma upper_semicontinuous_binfi {p : ι → Prop} {f : Π i (h : p i), α → δ} (h : ∀ i hi, upper_semicontinuous (f i hi)) : upper_semicontinuous (λ x', ⨅ i hi, f i hi x') := upper_semicontinuous_infi $ λ i, upper_semicontinuous_infi $ λ hi, h i hi end section variables {γ : Type*} [linear_order γ] [topological_space γ] [order_topology γ] lemma continuous_within_at_iff_lower_upper_semicontinuous_within_at {f : α → γ} : continuous_within_at f s x ↔ lower_semicontinuous_within_at f s x ∧ upper_semicontinuous_within_at f s x:= begin refine ⟨λ h, ⟨h.lower_semicontinuous_within_at, h.upper_semicontinuous_within_at⟩, _⟩, rintros ⟨h₁, h₂⟩, assume v hv, simp only [filter.mem_map], by_cases Hl : ∃ l, l < f x, { rcases exists_Ioc_subset_of_mem_nhds hv Hl with ⟨l, lfx, hl⟩, by_cases Hu : ∃ u, f x < u, { rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩, filter_upwards [h₁ l lfx, h₂ u fxu] with a lfa fau, cases le_or_gt (f a) (f x) with h h, { exact hl ⟨lfa, h⟩ }, { exact hu ⟨le_of_lt h, fau⟩ } }, { simp only [not_exists, not_lt] at Hu, filter_upwards [h₁ l lfx] with a lfa using hl ⟨lfa, Hu (f a)⟩, }, }, { simp only [not_exists, not_lt] at Hl, by_cases Hu : ∃ u, f x < u, { rcases exists_Ico_subset_of_mem_nhds hv Hu with ⟨u, fxu, hu⟩, filter_upwards [h₂ u fxu] with a lfa, apply hu, exact ⟨Hl (f a), lfa⟩ }, { simp only [not_exists, not_lt] at Hu, apply filter.eventually_of_forall, assume a, have : f a = f x := le_antisymm (Hu _) (Hl _), rw this, exact mem_of_mem_nhds hv } } end lemma continuous_at_iff_lower_upper_semicontinuous_at {f : α → γ} : continuous_at f x ↔ (lower_semicontinuous_at f x ∧ upper_semicontinuous_at f x) := by simp_rw [← continuous_within_at_univ, ← lower_semicontinuous_within_at_univ_iff, ← upper_semicontinuous_within_at_univ_iff, continuous_within_at_iff_lower_upper_semicontinuous_within_at] lemma continuous_on_iff_lower_upper_semicontinuous_on {f : α → γ} : continuous_on f s ↔ (lower_semicontinuous_on f s ∧ upper_semicontinuous_on f s) := begin simp only [continuous_on, continuous_within_at_iff_lower_upper_semicontinuous_within_at], exact ⟨λ H, ⟨λ x hx, (H x hx).1, λ x hx, (H x hx).2⟩, λ H x hx, ⟨H.1 x hx, H.2 x hx⟩⟩ end lemma continuous_iff_lower_upper_semicontinuous {f : α → γ} : continuous f ↔ (lower_semicontinuous f ∧ upper_semicontinuous f) := by simp_rw [continuous_iff_continuous_on_univ, continuous_on_iff_lower_upper_semicontinuous_on, lower_semicontinuous_on_univ_iff, upper_semicontinuous_on_univ_iff] end