/- Copyright (c) 2022 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import tactic.ring_exp import topology.metric_space.hausdorff_distance /-! # Topological study of spaces `Π (n : ℕ), E n` When `E n` are topological spaces, the space `Π (n : ℕ), E n` is naturally a topological space (with the product topology). When `E n` are uniform spaces, it also inherits a uniform structure. However, it does not inherit a canonical metric space structure of the `E n`. Nevertheless, one can put a noncanonical metric space structure (or rather, several of them). This is done in this file. ## Main definitions and results One can define a combinatorial distance on `Π (n : ℕ), E n`, as follows: * `pi_nat.cylinder x n` is the set of points `y` with `x i = y i` for `i < n`. * `pi_nat.first_diff x y` is the first index at which `x i ≠ y i`. * `pi_nat.dist x y` is equal to `(1/2) ^ (first_diff x y)`. It defines a distance on `Π (n : ℕ), E n`, compatible with the topology when the `E n` have the discrete topology. * `pi_nat.metric_space`: the metric space structure, given by this distance. Not registered as an instance. This space is a complete metric space. * `pi_nat.metric_space_of_discrete_uniformity`: the same metric space structure, but adjusting the uniformity defeqness when the `E n` already have the discrete uniformity. Not registered as an instance * `pi_nat.metric_space_nat_nat`: the particular case of `ℕ → ℕ`, not registered as an instance. These results are used to construct continuous functions on `Π n, E n`: * `pi_nat.exists_retraction_of_is_closed`: given a nonempty closed subset `s` of `Π (n : ℕ), E n`, there exists a retraction onto `s`, i.e., a continuous map from the whole space to `s` restricting to the identity on `s`. * `exists_nat_nat_continuous_surjective_of_complete_space`: given any nonempty complete metric space with second-countable topology, there exists a continuous surjection from `ℕ → ℕ` onto this space. One can also put distances on `Π (i : ι), E i` when the spaces `E i` are metric spaces (not discrete in general), and `ι` is countable. * `pi_countable.dist` is the distance on `Π i, E i` given by `dist x y = ∑' i, min (1/2)^(encode i) (dist (x i) (y i))`. * `pi_countable.metric_space` is the corresponding metric space structure, adjusted so that the uniformity is definitionally the product uniformity. Not registered as an instance. -/ noncomputable theory open_locale classical topological_space filter open topological_space set metric filter function local attribute [simp] pow_le_pow_iff one_lt_two inv_le_inv variable {E : ℕ → Type*} namespace pi_nat /-! ### The first_diff function -/ /-- In a product space `Π n, E n`, then `first_diff x y` is the first index at which `x` and `y` differ. If `x = y`, then by convention we set `first_diff x x = 0`. -/ @[irreducible, pp_nodot] def first_diff (x y : Π n, E n) : ℕ := if h : x ≠ y then nat.find (ne_iff.1 h) else 0 lemma apply_first_diff_ne {x y : Π n, E n} (h : x ≠ y) : x (first_diff x y) ≠ y (first_diff x y) := begin rw [first_diff, dif_pos h], exact nat.find_spec (ne_iff.1 h), end lemma apply_eq_of_lt_first_diff {x y : Π n, E n} {n : ℕ} (hn : n < first_diff x y) : x n = y n := begin rw first_diff at hn, split_ifs at hn, { convert nat.find_min (ne_iff.1 h) hn, simp }, { exact (not_lt_zero' hn).elim } end lemma first_diff_comm (x y : Π n, E n) : first_diff x y = first_diff y x := begin rcases eq_or_ne x y with rfl|hxy, { refl }, rcases lt_trichotomy (first_diff x y) (first_diff y x) with h|h|h, { exact (apply_first_diff_ne hxy (apply_eq_of_lt_first_diff h).symm).elim }, { exact h }, { exact (apply_first_diff_ne hxy.symm (apply_eq_of_lt_first_diff h).symm).elim } end lemma min_first_diff_le (x y z : Π n, E n) (h : x ≠ z) : min (first_diff x y) (first_diff y z) ≤ first_diff x z := begin by_contra' H, have : x (first_diff x z) = z (first_diff x z), from calc x (first_diff x z) = y (first_diff x z) : apply_eq_of_lt_first_diff (H.trans_le (min_le_left _ _)) ... = z ((first_diff x z)) : apply_eq_of_lt_first_diff (H.trans_le (min_le_right _ _)), exact (apply_first_diff_ne h this).elim, end /-! ### Cylinders -/ /-- In a product space `Π n, E n`, the cylinder set of length `n` around `x`, denoted `cylinder x n`, is the set of sequences `y` that coincide with `x` on the first `n` symbols, i.e., such that `y i = x i` for all `i < n`. -/ def cylinder (x : Π n, E n) (n : ℕ) : set (Π n, E n) := {y | ∀ i, i < n → y i = x i} lemma cylinder_eq_pi (x : Π n, E n) (n : ℕ) : cylinder x n = set.pi (finset.range n : set ℕ) (λ (i : ℕ), {x i}) := by { ext y, simp [cylinder] } @[simp] lemma cylinder_zero (x : Π n, E n) : cylinder x 0 = univ := by simp [cylinder_eq_pi] lemma cylinder_anti (x : Π n, E n) {m n : ℕ} (h : m ≤ n) : cylinder x n ⊆ cylinder x m := λ y hy i hi, hy i (hi.trans_le h) @[simp] lemma mem_cylinder_iff {x y : Π n, E n} {n : ℕ} : y ∈ cylinder x n ↔ ∀ i, i < n → y i = x i := iff.rfl lemma self_mem_cylinder (x : Π n, E n) (n : ℕ) : x ∈ cylinder x n := by simp lemma mem_cylinder_iff_eq {x y : Π n, E n} {n : ℕ} : y ∈ cylinder x n ↔ cylinder y n = cylinder x n := begin split, { assume hy, apply subset.antisymm, { assume z hz i hi, rw ← hy i hi, exact hz i hi }, { assume z hz i hi, rw hy i hi, exact hz i hi } }, { assume h, rw ← h, exact self_mem_cylinder _ _ } end lemma mem_cylinder_comm (x y : Π n, E n) (n : ℕ) : y ∈ cylinder x n ↔ x ∈ cylinder y n := by simp [mem_cylinder_iff_eq, eq_comm] lemma mem_cylinder_iff_le_first_diff {x y : Π n, E n} (hne : x ≠ y) (i : ℕ) : x ∈ cylinder y i ↔ i ≤ first_diff x y := begin split, { assume h, by_contra', exact apply_first_diff_ne hne (h _ this) }, { assume hi j hj, exact apply_eq_of_lt_first_diff (hj.trans_le hi) } end lemma mem_cylinder_first_diff (x y : Π n, E n) : x ∈ cylinder y (first_diff x y) := λ i hi, apply_eq_of_lt_first_diff hi lemma cylinder_eq_cylinder_of_le_first_diff (x y : Π n, E n) {n : ℕ} (hn : n ≤ first_diff x y) : cylinder x n = cylinder y n := begin rw ← mem_cylinder_iff_eq, assume i hi, exact apply_eq_of_lt_first_diff (hi.trans_le hn), end lemma Union_cylinder_update (x : Π n, E n) (n : ℕ) : (⋃ k, cylinder (update x n k) (n+1)) = cylinder x n := begin ext y, simp only [mem_cylinder_iff, mem_Union], split, { rintros ⟨k, hk⟩ i hi, simpa [hi.ne] using hk i (nat.lt_succ_of_lt hi) }, { assume H, refine ⟨y n, λ i hi, _⟩, rcases nat.lt_succ_iff_lt_or_eq.1 hi with h'i|rfl, { simp [H i h'i, h'i.ne] }, { simp } }, end lemma update_mem_cylinder (x : Π n, E n) (n : ℕ) (y : E n) : update x n y ∈ cylinder x n := mem_cylinder_iff.2 (λ i hi, by simp [hi.ne]) /-! ### A distance function on `Π n, E n` We define a distance function on `Π n, E n`, given by `dist x y = (1/2)^n` where `n` is the first index at which `x` and `y` differ. When each `E n` has the discrete topology, this distance will define the right topology on the product space. We do not record a global `has_dist` instance nor a `metric_space`instance, as other distances may be used on these spaces, but we register them as local instances in this section. -/ /-- The distance function on a product space `Π n, E n`, given by `dist x y = (1/2)^n` where `n` is the first index at which `x` and `y` differ. -/ protected def has_dist : has_dist (Π n, E n) := ⟨λ x y, if h : x ≠ y then (1/2 : ℝ) ^ (first_diff x y) else 0⟩ local attribute [instance] pi_nat.has_dist lemma dist_eq_of_ne {x y : Π n, E n} (h : x ≠ y) : dist x y = (1/2 : ℝ) ^ (first_diff x y) := by simp [dist, h] protected lemma dist_self (x : Π n, E n) : dist x x = 0 := by simp [dist] protected lemma dist_comm (x y : Π n, E n) : dist x y = dist y x := by simp [dist, @eq_comm _ x y, first_diff_comm] protected lemma dist_nonneg (x y : Π n, E n) : 0 ≤ dist x y := begin rcases eq_or_ne x y with rfl|h, { simp [dist] }, { simp [dist, h] } end lemma dist_triangle_nonarch (x y z : Π n, E n) : dist x z ≤ max (dist x y) (dist y z) := begin rcases eq_or_ne x z with rfl|hxz, { simp [pi_nat.dist_self x, pi_nat.dist_nonneg] }, rcases eq_or_ne x y with rfl|hxy, { simp }, rcases eq_or_ne y z with rfl|hyz, { simp }, simp only [dist_eq_of_ne, hxz, hxy, hyz, inv_le_inv, one_div, inv_pow, zero_lt_bit0, ne.def, not_false_iff, le_max_iff, zero_lt_one, pow_le_pow_iff, one_lt_two, pow_pos, min_le_iff.1 (min_first_diff_le x y z hxz)], end protected lemma dist_triangle (x y z : Π n, E n) : dist x z ≤ dist x y + dist y z := calc dist x z ≤ max (dist x y) (dist y z) : dist_triangle_nonarch x y z ... ≤ dist x y + dist y z : max_le_add_of_nonneg (pi_nat.dist_nonneg _ _) (pi_nat.dist_nonneg _ _) protected lemma eq_of_dist_eq_zero (x y : Π n, E n) (hxy : dist x y = 0) : x = y := begin rcases eq_or_ne x y with rfl|h, { refl }, simp [dist_eq_of_ne h] at hxy, exact (two_ne_zero (pow_eq_zero hxy)).elim end lemma mem_cylinder_iff_dist_le {x y : Π n, E n} {n : ℕ} : y ∈ cylinder x n ↔ dist y x ≤ (1/2)^n := begin rcases eq_or_ne y x with rfl|hne, { simp [pi_nat.dist_self] }, suffices : (∀ (i : ℕ), i < n → y i = x i) ↔ n ≤ first_diff y x, by simpa [dist_eq_of_ne hne], split, { assume hy, by_contra' H, exact apply_first_diff_ne hne (hy _ H) }, { assume h i hi, exact apply_eq_of_lt_first_diff (hi.trans_le h) } end lemma apply_eq_of_dist_lt {x y : Π n, E n} {n : ℕ} (h : dist x y < (1/2) ^ n) {i : ℕ} (hi : i ≤ n) : x i = y i := begin rcases eq_or_ne x y with rfl|hne, { refl }, have : n < first_diff x y, by simpa [dist_eq_of_ne hne, inv_lt_inv, pow_lt_pow_iff, one_lt_two] using h, exact apply_eq_of_lt_first_diff (hi.trans_lt this), end /-- A function to a pseudo-metric-space is `1`-Lipschitz if and only if points in the same cylinder of length `n` are sent to points within distance `(1/2)^n`. Not expressed using `lipschitz_with` as we don't have a metric space structure -/ lemma lipschitz_with_one_iff_forall_dist_image_le_of_mem_cylinder {α : Type*} [pseudo_metric_space α] {f : (Π n, E n) → α} : (∀ (x y : Π n, E n), dist (f x) (f y) ≤ dist x y) ↔ (∀ x y n, y ∈ cylinder x n → dist (f x) (f y) ≤ (1/2)^n) := begin split, { assume H x y n hxy, apply (H x y).trans, rw pi_nat.dist_comm, exact mem_cylinder_iff_dist_le.1 hxy }, { assume H x y, rcases eq_or_ne x y with rfl|hne, { simp [pi_nat.dist_nonneg] }, rw dist_eq_of_ne hne, apply H x y (first_diff x y), rw first_diff_comm, exact mem_cylinder_first_diff _ _ } end variables (E) [∀ n, topological_space (E n)] [∀ n, discrete_topology (E n)] lemma is_topological_basis_cylinders : is_topological_basis {s : set (Π n, E n) | ∃ (x : Π n, E n) (n : ℕ), s = cylinder x n} := begin apply is_topological_basis_of_open_of_nhds, { rintros u ⟨x, n, rfl⟩, rw cylinder_eq_pi, exact is_open_set_pi (finset.range n).finite_to_set (λ a ha, is_open_discrete _) }, { assume x u hx u_open, obtain ⟨v, ⟨U, F, hUF, rfl⟩, xU, Uu⟩ : ∃ (v : set (Π (i : ℕ), E i)) (H : v ∈ {S : set (Π (i : ℕ), E i) | ∃ (U : Π (i : ℕ), set (E i)) (F : finset ℕ), (∀ (i : ℕ), i ∈ F → U i ∈ {s : set (E i) | is_open s}) ∧ S = (F : set ℕ).pi U}), x ∈ v ∧ v ⊆ u := (is_topological_basis_pi (λ (n : ℕ), is_topological_basis_opens)).exists_subset_of_mem_open hx u_open, rcases finset.bdd_above F with ⟨n, hn⟩, refine ⟨cylinder x (n+1), ⟨x, n+1, rfl⟩, self_mem_cylinder _ _, subset.trans _ Uu⟩, assume y hy, suffices : ∀ (i : ℕ), i ∈ F → y i ∈ U i, by simpa, assume i hi, have : y i = x i := mem_cylinder_iff.1 hy i ((hn hi).trans_lt (lt_add_one n)), rw this, simp only [set.mem_pi, finset.mem_coe] at xU, exact xU i hi } end variable {E} lemma is_open_iff_dist (s : set (Π n, E n)) : is_open s ↔ ∀ x ∈ s, ∃ ε > 0, ∀ y, dist x y < ε → y ∈ s := begin split, { assume hs x hx, obtain ⟨v, ⟨y, n, rfl⟩, h'x, h's⟩ : ∃ (v : set (Π (n : ℕ), E n)) (H : v ∈ {s | ∃ (x : Π (n : ℕ), E n) (n : ℕ), s = cylinder x n}), x ∈ v ∧ v ⊆ s := (is_topological_basis_cylinders E).exists_subset_of_mem_open hx hs, rw ← mem_cylinder_iff_eq.1 h'x at h's, exact ⟨(1/2 : ℝ)^n, by simp, λ y hy, h's (λ i hi, (apply_eq_of_dist_lt hy hi.le).symm)⟩ }, { assume h, apply (is_topological_basis_cylinders E).is_open_iff.2 (λ x hx, _), rcases h x hx with ⟨ε, εpos, hε⟩, obtain ⟨n, hn⟩ : ∃ (n : ℕ), (1/2 : ℝ) ^ n < ε := exists_pow_lt_of_lt_one εpos one_half_lt_one, refine ⟨cylinder x n, ⟨x, n, rfl⟩, self_mem_cylinder x n, λ y hy, hε y _⟩, rw pi_nat.dist_comm, exact (mem_cylinder_iff_dist_le.1 hy).trans_lt hn } end /-- Metric space structure on `Π (n : ℕ), E n` when the spaces `E n` have the discrete topology, where the distance is given by `dist x y = (1/2)^n`, where `n` is the smallest index where `x` and `y` differ. Not registered as a global instance by default. Warning: this definition makes sure that the topology is defeq to the original product topology, but it does not take care of a possible uniformity. If the `E n` have a uniform structure, then there will be two non-defeq uniform structures on `Π n, E n`, the product one and the one coming from the metric structure. In this case, use `metric_space_of_discrete_uniformity` instead. -/ protected def metric_space : metric_space (Π n, E n) := metric_space.of_metrizable dist pi_nat.dist_self pi_nat.dist_comm pi_nat.dist_triangle is_open_iff_dist pi_nat.eq_of_dist_eq_zero /-- Metric space structure on `Π (n : ℕ), E n` when the spaces `E n` have the discrete uniformity, where the distance is given by `dist x y = (1/2)^n`, where `n` is the smallest index where `x` and `y` differ. Not registered as a global instance by default. -/ protected def metric_space_of_discrete_uniformity {E : ℕ → Type*} [∀ n, uniform_space (E n)] (h : ∀ n, uniformity (E n) = 𝓟 id_rel) : metric_space (Π n, E n) := begin haveI : ∀ n, discrete_topology (E n) := λ n, discrete_topology_of_discrete_uniformity (h n), exact { dist_triangle := pi_nat.dist_triangle, dist_comm := pi_nat.dist_comm, dist_self := pi_nat.dist_self, eq_of_dist_eq_zero := pi_nat.eq_of_dist_eq_zero, to_uniform_space := Pi.uniform_space _, uniformity_dist := begin simp [Pi.uniformity, comap_infi, gt_iff_lt, preimage_set_of_eq, comap_principal, pseudo_metric_space.uniformity_dist, h, id_rel], apply le_antisymm, { simp only [le_infi_iff, le_principal_iff], assume ε εpos, obtain ⟨n, hn⟩ : ∃ n, (1/2 : ℝ)^n < ε := exists_pow_lt_of_lt_one εpos (by norm_num), apply @mem_infi_of_Inter _ _ _ _ _ (finset.range n).finite_to_set (λ i, {p : (Π (n : ℕ), E n) × Π (n : ℕ), E n | p.fst i = p.snd i}), { simp only [mem_principal, set_of_subset_set_of, imp_self, implies_true_iff] }, { rintros ⟨x, y⟩ hxy, simp only [finset.mem_coe, finset.mem_range, Inter_coe_set, mem_Inter, mem_set_of_eq] at hxy, apply lt_of_le_of_lt _ hn, rw [← mem_cylinder_iff_dist_le, mem_cylinder_iff], exact hxy } }, { simp only [le_infi_iff, le_principal_iff], assume n, refine mem_infi_of_mem ((1/2)^n) _, refine mem_infi_of_mem (by norm_num) _, simp only [mem_principal, set_of_subset_set_of, prod.forall], assume x y hxy, exact apply_eq_of_dist_lt hxy le_rfl } end } end /-- Metric space structure on `ℕ → ℕ` where the distance is given by `dist x y = (1/2)^n`, where `n` is the smallest index where `x` and `y` differ. Not registered as a global instance by default. -/ def metric_space_nat_nat : metric_space (ℕ → ℕ) := pi_nat.metric_space_of_discrete_uniformity (λ n, rfl) local attribute [instance] pi_nat.metric_space protected lemma complete_space : complete_space (Π n, E n) := begin refine metric.complete_of_convergent_controlled_sequences (λ n, (1/2)^n) (by simp) _, assume u hu, refine ⟨λ n, u n n, tendsto_pi_nhds.2 (λ i, _)⟩, refine tendsto_const_nhds.congr' _, filter_upwards [filter.Ici_mem_at_top i] with n hn, exact apply_eq_of_dist_lt (hu i i n le_rfl hn) le_rfl, end /-! ### Retractions inside product spaces We show that, in a space `Π (n : ℕ), E n` where each `E n` is discrete, there is a retraction on any closed nonempty subset `s`, i.e., a continuous map `f` from the whole space to `s` restricting to the identity on `s`. The map `f` is defined as follows. For `x ∈ s`, let `f x = x`. Otherwise, consider the longest prefix `w` that `x` shares with an element of `s`, and let `f x = z_w` where `z_w` is an element of `s` starting with `w`. -/ lemma exists_disjoint_cylinder {s : set (Π n, E n)} (hs : is_closed s) {x : Π n, E n} (hx : x ∉ s) : ∃ n, disjoint s (cylinder x n) := begin unfreezingI { rcases eq_empty_or_nonempty s with rfl|hne }, { exact ⟨0, by simp⟩ }, have A : 0 < inf_dist x s := (hs.not_mem_iff_inf_dist_pos hne).1 hx, obtain ⟨n, hn⟩ : ∃ n, (1/2 : ℝ)^n < inf_dist x s := exists_pow_lt_of_lt_one A (one_half_lt_one), refine ⟨n, _⟩, apply disjoint_left.2 (λ y ys hy, _), apply lt_irrefl (inf_dist x s), calc inf_dist x s ≤ dist x y : inf_dist_le_dist_of_mem ys ... ≤ (1/2)^n : by { rw mem_cylinder_comm at hy, exact mem_cylinder_iff_dist_le.1 hy } ... < inf_dist x s : hn end /-- Given a point `x` in a product space `Π (n : ℕ), E n`, and `s` a subset of this space, then `shortest_prefix_diff x s` if the smallest `n` for which there is no element of `s` having the same prefix of length `n` as `x`. If there is no such `n`, then use `0` by convention. -/ def shortest_prefix_diff {E : ℕ → Type*} (x : (Π n, E n)) (s : set (Π n, E n)) : ℕ := if h : ∃ n, disjoint s (cylinder x n) then nat.find h else 0 lemma first_diff_lt_shortest_prefix_diff {s : set (Π n, E n)} (hs : is_closed s) {x y : (Π n, E n)} (hx : x ∉ s) (hy : y ∈ s) : first_diff x y < shortest_prefix_diff x s := begin have A := exists_disjoint_cylinder hs hx, rw [shortest_prefix_diff, dif_pos A], have B := nat.find_spec A, contrapose! B, rw not_disjoint_iff_nonempty_inter, refine ⟨y, hy, _⟩, rw mem_cylinder_comm, exact cylinder_anti y B (mem_cylinder_first_diff x y) end lemma shortest_prefix_diff_pos {s : set (Π n, E n)} (hs : is_closed s) (hne : s.nonempty) {x : (Π n, E n)} (hx : x ∉ s) : 0 < shortest_prefix_diff x s := begin rcases hne with ⟨y, hy⟩, exact (zero_le _).trans_lt (first_diff_lt_shortest_prefix_diff hs hx hy) end /-- Given a point `x` in a product space `Π (n : ℕ), E n`, and `s` a subset of this space, then `longest_prefix x s` if the largest `n` for which there is an element of `s` having the same prefix of length `n` as `x`. If there is no such `n`, use `0` by convention. -/ def longest_prefix {E : ℕ → Type*} (x : (Π n, E n)) (s : set (Π n, E n)) : ℕ := shortest_prefix_diff x s - 1 lemma first_diff_le_longest_prefix {s : set (Π n, E n)} (hs : is_closed s) {x y : (Π n, E n)} (hx : x ∉ s) (hy : y ∈ s) : first_diff x y ≤ longest_prefix x s := begin rw [longest_prefix, le_tsub_iff_right], { exact first_diff_lt_shortest_prefix_diff hs hx hy }, { exact shortest_prefix_diff_pos hs ⟨y, hy⟩ hx } end lemma inter_cylinder_longest_prefix_nonempty {s : set (Π n, E n)} (hs : is_closed s) (hne : s.nonempty) (x : (Π n, E n)) : (s ∩ cylinder x (longest_prefix x s)).nonempty := begin by_cases hx : x ∈ s, { exact ⟨x, hx, self_mem_cylinder _ _⟩ }, have A := exists_disjoint_cylinder hs hx, have B : longest_prefix x s < shortest_prefix_diff x s := nat.pred_lt (shortest_prefix_diff_pos hs hne hx).ne', rw [longest_prefix, shortest_prefix_diff, dif_pos A] at B ⊢, obtain ⟨y, ys, hy⟩ : ∃ (y : Π (n : ℕ), E n), y ∈ s ∧ x ∈ cylinder y (nat.find A - 1), { have := nat.find_min A B, push_neg at this, simp_rw [not_disjoint_iff, mem_cylinder_comm] at this, exact this }, refine ⟨y, ys, _⟩, rw mem_cylinder_iff_eq at hy ⊢, rw hy end lemma disjoint_cylinder_of_longest_prefix_lt {s : set (Π n, E n)} (hs : is_closed s) {x : (Π n, E n)} (hx : x ∉ s) {n : ℕ} (hn : longest_prefix x s < n) : disjoint s (cylinder x n) := begin rcases eq_empty_or_nonempty s with h's|hne, { simp [h's] }, contrapose! hn, rcases not_disjoint_iff_nonempty_inter.1 hn with ⟨y, ys, hy⟩, apply le_trans _ (first_diff_le_longest_prefix hs hx ys), apply (mem_cylinder_iff_le_first_diff (ne_of_mem_of_not_mem ys hx).symm _).1, rwa mem_cylinder_comm, end /-- If two points `x, y` coincide up to length `n`, and the longest common prefix of `x` with `s` is strictly shorter than `n`, then the longest common prefix of `y` with `s` is the same, and both cylinders of this length based at `x` and `y` coincide. -/ lemma cylinder_longest_prefix_eq_of_longest_prefix_lt_first_diff {x y : Π n, E n} {s : set (Π n, E n)} (hs : is_closed s) (hne : s.nonempty) (H : longest_prefix x s < first_diff x y) (xs : x ∉ s) (ys : y ∉ s) : cylinder x (longest_prefix x s) = cylinder y (longest_prefix y s) := begin have l_eq : longest_prefix y s = longest_prefix x s, { rcases lt_trichotomy (longest_prefix y s) (longest_prefix x s) with L|L|L, { have Ax : (s ∩ cylinder x (longest_prefix x s)).nonempty := inter_cylinder_longest_prefix_nonempty hs hne x, have Z := disjoint_cylinder_of_longest_prefix_lt hs ys L, rw first_diff_comm at H, rw [cylinder_eq_cylinder_of_le_first_diff _ _ H.le] at Z, exact (Ax.not_disjoint Z).elim }, { exact L }, { have Ay : (s ∩ cylinder y (longest_prefix y s)).nonempty := inter_cylinder_longest_prefix_nonempty hs hne y, have A'y : (s ∩ cylinder y (longest_prefix x s).succ).nonempty := Ay.mono (inter_subset_inter_right s (cylinder_anti _ L)), have Z := disjoint_cylinder_of_longest_prefix_lt hs xs (nat.lt_succ_self _), rw cylinder_eq_cylinder_of_le_first_diff _ _ H at Z, exact (A'y.not_disjoint Z).elim } }, rw [l_eq, ← mem_cylinder_iff_eq], exact cylinder_anti y H.le (mem_cylinder_first_diff x y) end /-- Given a closed nonempty subset `s` of `Π (n : ℕ), E n`, there exists a Lipschitz retraction onto this set, i.e., a Lipschitz map with range equal to `s`, equal to the identity on `s`. -/ theorem exists_lipschitz_retraction_of_is_closed {s : set (Π n, E n)} (hs : is_closed s) (hne : s.nonempty) : ∃ f : (Π n, E n) → (Π n, E n), (∀ x ∈ s, f x = x) ∧ (range f = s) ∧ lipschitz_with 1 f := begin /- The map `f` is defined as follows. For `x ∈ s`, let `f x = x`. Otherwise, consider the longest prefix `w` that `x` shares with an element of `s`, and let `f x = z_w` where `z_w` is an element of `s` starting with `w`. All the desired properties are clear, except the fact that `f` is `1`-Lipschitz: if two points `x, y` belong to a common cylinder of length `n`, one should show that their images also belong to a common cylinder of length `n`. This is a case analysis: * if both `x, y ∈ s`, then this is clear. * if `x ∈ s` but `y ∉ s`, then the longest prefix `w` of `y` shared by an element of `s` is of length at least `n` (because of `x`), and then `f y` starts with `w` and therefore stays in the same length `n` cylinder. * if `x ∉ s`, `y ∉ s`, let `w` be the longest prefix of `x` shared by an element of `s`. If its length is `< n`, then it is also the longest prefix of `y`, and we get `f x = f y = z_w`. Otherwise, `f x` remains in the same `n`-cylinder as `x`. Similarly for `y`. Finally, `f x` and `f y` are again in the same `n`-cylinder, as desired. -/ set f := λ x, if x ∈ s then x else (inter_cylinder_longest_prefix_nonempty hs hne x).some with hf, have fs : ∀ x ∈ s, f x = x := λ x xs, by simp [xs], refine ⟨f, fs, _, _⟩, -- check that the range of `f` is `s`. { apply subset.antisymm, { rintros x ⟨y, rfl⟩, by_cases hy : y ∈ s, { rwa fs y hy }, simpa [hf, if_neg hy] using (inter_cylinder_longest_prefix_nonempty hs hne y).some_spec.1 }, { assume x hx, rw ← fs x hx, exact mem_range_self _ } }, -- check that `f` is `1`-Lipschitz, by a case analysis. { apply lipschitz_with.mk_one (λ x y, _), -- exclude the trivial cases where `x = y`, or `f x = f y`. rcases eq_or_ne x y with rfl|hxy, { simp }, rcases eq_or_ne (f x) (f y) with h'|hfxfy, { simp [h', dist_nonneg] }, have I2 : cylinder x (first_diff x y) = cylinder y (first_diff x y), { rw ← mem_cylinder_iff_eq, apply mem_cylinder_first_diff }, suffices : first_diff x y ≤ first_diff (f x) (f y), by simpa [dist_eq_of_ne hxy, dist_eq_of_ne hfxfy], -- case where `x ∈ s` by_cases xs : x ∈ s, { rw [fs x xs] at ⊢ hfxfy, -- case where `y ∈ s`, trivial by_cases ys : y ∈ s, { rw [fs y ys] }, -- case where `y ∉ s` have A : (s ∩ cylinder y (longest_prefix y s)).nonempty := inter_cylinder_longest_prefix_nonempty hs hne y, have fy : f y = A.some, by simp_rw [hf, if_neg ys], have I : cylinder A.some (first_diff x y) = cylinder y (first_diff x y), { rw [← mem_cylinder_iff_eq, first_diff_comm], apply cylinder_anti y _ A.some_spec.2, exact first_diff_le_longest_prefix hs ys xs }, rwa [← fy, ← I2, ← mem_cylinder_iff_eq, mem_cylinder_iff_le_first_diff hfxfy.symm, first_diff_comm _ x] at I }, -- case where `x ∉ s` { by_cases ys : y ∈ s, -- case where `y ∈ s` (similar to the above) { have A : (s ∩ cylinder x (longest_prefix x s)).nonempty := inter_cylinder_longest_prefix_nonempty hs hne x, have fx : f x = A.some, by simp_rw [hf, if_neg xs], have I : cylinder A.some (first_diff x y) = cylinder x (first_diff x y), { rw ← mem_cylinder_iff_eq, apply cylinder_anti x _ A.some_spec.2, apply first_diff_le_longest_prefix hs xs ys }, rw fs y ys at ⊢ hfxfy, rwa [← fx, I2, ← mem_cylinder_iff_eq, mem_cylinder_iff_le_first_diff hfxfy] at I }, -- case where `y ∉ s` { have Ax : (s ∩ cylinder x (longest_prefix x s)).nonempty := inter_cylinder_longest_prefix_nonempty hs hne x, have fx : f x = Ax.some, by simp_rw [hf, if_neg xs], have Ay : (s ∩ cylinder y (longest_prefix y s)).nonempty := inter_cylinder_longest_prefix_nonempty hs hne y, have fy : f y = Ay.some, by simp_rw [hf, if_neg ys], -- case where the common prefix to `x` and `s`, or `y` and `s`, is shorter than the -- common part to `x` and `y` -- then `f x = f y`. by_cases H : longest_prefix x s < first_diff x y ∨ longest_prefix y s < first_diff x y, { have : cylinder x (longest_prefix x s) = cylinder y (longest_prefix y s), { cases H, { exact cylinder_longest_prefix_eq_of_longest_prefix_lt_first_diff hs hne H xs ys }, { symmetry, rw first_diff_comm at H, exact cylinder_longest_prefix_eq_of_longest_prefix_lt_first_diff hs hne H ys xs } }, rw [fx, fy] at hfxfy, apply (hfxfy _).elim, congr' }, -- case where the common prefix to `x` and `s` is long, as well as the common prefix to -- `y` and `s`. Then all points remain in the same cylinders. { push_neg at H, have I1 : cylinder Ax.some (first_diff x y) = cylinder x (first_diff x y), { rw ← mem_cylinder_iff_eq, exact cylinder_anti x H.1 Ax.some_spec.2 }, have I3 : cylinder y (first_diff x y) = cylinder Ay.some (first_diff x y), { rw [eq_comm, ← mem_cylinder_iff_eq], exact cylinder_anti y H.2 Ay.some_spec.2 }, have : cylinder Ax.some (first_diff x y) = cylinder Ay.some (first_diff x y), by rw [I1, I2, I3], rw [← fx, ← fy, ← mem_cylinder_iff_eq, mem_cylinder_iff_le_first_diff hfxfy] at this, exact this } } } } end /-- Given a closed nonempty subset `s` of `Π (n : ℕ), E n`, there exists a retraction onto this set, i.e., a continuous map with range equal to `s`, equal to the identity on `s`. -/ theorem exists_retraction_of_is_closed {s : set (Π n, E n)} (hs : is_closed s) (hne : s.nonempty) : ∃ f : (Π n, E n) → (Π n, E n), (∀ x ∈ s, f x = x) ∧ (range f = s) ∧ continuous f := begin rcases exists_lipschitz_retraction_of_is_closed hs hne with ⟨f, fs, frange, hf⟩, exact ⟨f, fs, frange, hf.continuous⟩ end theorem exists_retraction_subtype_of_is_closed {s : set (Π n, E n)} (hs : is_closed s) (hne : s.nonempty) : ∃ f : (Π n, E n) → s, (∀ x : s, f x = x) ∧ surjective f ∧ continuous f := begin obtain ⟨f, fs, f_range, f_cont⟩ : ∃ f : (Π n, E n) → (Π n, E n), (∀ x ∈ s, f x = x) ∧ (range f = s) ∧ continuous f := exists_retraction_of_is_closed hs hne, have A : ∀ x, f x ∈ s, by simp [← f_range], have B : ∀ (x : s), cod_restrict f s A x = x, { assume x, apply subtype.coe_injective.eq_iff.1, simpa only using fs x.val x.property }, exact ⟨cod_restrict f s A, B, λ x, ⟨x, B x⟩, continuous_subtype_mk _ f_cont⟩, end end pi_nat open pi_nat /-- Any nonempty complete second countable metric space is the continuous image of the fundamental space `ℕ → ℕ`. For a version of this theorem in the context of Polish spaces, see `exists_nat_nat_continuous_surjective_of_polish_space`. -/ lemma exists_nat_nat_continuous_surjective_of_complete_space (α : Type*) [metric_space α] [complete_space α] [second_countable_topology α] [nonempty α] : ∃ (f : (ℕ → ℕ) → α), continuous f ∧ surjective f := begin /- First, we define a surjective map from a closed subset `s` of `ℕ → ℕ`. Then, we compose this map with a retraction of `ℕ → ℕ` onto `s` to obtain the desired map. Let us consider a dense sequence `u` in `α`. Then `s` is the set of sequences `xₙ` such that the balls `closed_ball (u xₙ) (1/2^n)` have a nonempty intersection. This set is closed, and we define `f x` there to be the unique point in the intersection. This function is continuous and surjective by design. -/ letI : metric_space (ℕ → ℕ) := pi_nat.metric_space_nat_nat, have I0 : (0 : ℝ) < 1/2, by norm_num, have I1 : (1/2 : ℝ) < 1, by norm_num, rcases exists_dense_seq α with ⟨u, hu⟩, let s : set (ℕ → ℕ) := {x | (⋂ (n : ℕ), closed_ball (u (x n)) ((1/2)^n)).nonempty}, let g : s → α := λ x, x.2.some, have A : ∀ (x : s) (n : ℕ), dist (g x) (u ((x : ℕ → ℕ) n)) ≤ (1/2)^n := λ x n, (mem_Inter.1 x.2.some_mem n : _), have g_cont : continuous g, { apply continuous_iff_continuous_at.2 (λ y, _), apply continuous_at_of_locally_lipschitz zero_lt_one 4 (λ x hxy, _), rcases eq_or_ne x y with rfl|hne, { simp }, have hne' : x.1 ≠ y.1 := subtype.coe_injective.ne hne, have dist' : dist x y = dist x.1 y.1 := rfl, let n := first_diff x.1 y.1 - 1, have diff_pos : 0 < first_diff x.1 y.1, { by_contra' h, apply apply_first_diff_ne hne', rw [le_zero_iff.1 h], apply apply_eq_of_dist_lt _ le_rfl, exact hxy }, have hn : first_diff x.1 y.1 = n + 1 := (nat.succ_pred_eq_of_pos diff_pos).symm, rw [dist', dist_eq_of_ne hne', hn], have B : x.1 n = y.1 n := mem_cylinder_first_diff x.1 y.1 n (nat.pred_lt diff_pos.ne'), calc dist (g x) (g y) ≤ dist (g x) (u (x.1 n)) + dist (g y) (u (x.1 n)) : dist_triangle_right _ _ _ ... = dist (g x) (u (x.1 n)) + dist (g y) (u (y.1 n)) : by rw ← B ... ≤ (1/2)^n + (1/2)^n : add_le_add (A x n) (A y n) ... = 4 * (1 / 2) ^ (n + 1) : by ring_exp }, have g_surj : surjective g, { assume y, have : ∀ (n : ℕ), ∃ j, y ∈ closed_ball (u j) ((1/2)^n), { assume n, rcases hu.exists_dist_lt y (by simp : (0 : ℝ) < (1/2)^n) with ⟨j, hj⟩, exact ⟨j, hj.le⟩ }, choose x hx using this, have I : (⋂ (n : ℕ), closed_ball (u (x n)) ((1 / 2) ^ n)).nonempty := ⟨y, mem_Inter.2 hx⟩, refine ⟨⟨x, I⟩, _⟩, refine dist_le_zero.1 _, have J : ∀ (n : ℕ), dist (g ⟨x, I⟩) y ≤ (1/2)^n + (1/2)^n := λ n, calc dist (g ⟨x, I⟩) y ≤ dist (g ⟨x, I⟩) (u (x n)) + dist y (u (x n)) : dist_triangle_right _ _ _ ... ≤ (1/2)^n + (1/2)^n : add_le_add (A ⟨x, I⟩ n) (hx n), have L : tendsto (λ (n : ℕ), (1/2 : ℝ)^n + (1/2)^n) at_top (𝓝 (0 + 0)) := (tendsto_pow_at_top_nhds_0_of_lt_1 I0.le I1).add (tendsto_pow_at_top_nhds_0_of_lt_1 I0.le I1), rw add_zero at L, exact ge_of_tendsto' L J }, have s_closed : is_closed s, { refine is_closed_iff_cluster_pt.mpr _, assume x hx, have L : tendsto (λ (n : ℕ), diam (closed_ball (u (x n)) ((1 / 2) ^ n))) at_top (𝓝 0), { have : tendsto (λ (n : ℕ), (2 : ℝ) * (1/2)^n) at_top (𝓝 (2 * 0)) := (tendsto_pow_at_top_nhds_0_of_lt_1 I0.le I1).const_mul _, rw mul_zero at this, exact squeeze_zero (λ n, diam_nonneg) (λ n, diam_closed_ball (pow_nonneg I0.le _)) this }, refine nonempty_Inter_of_nonempty_bInter (λ n, is_closed_ball) (λ n, bounded_closed_ball) _ L, assume N, obtain ⟨y, hxy, ys⟩ : ∃ y, y ∈ ball x ((1 / 2) ^ N) ∩ s := cluster_pt_principal_iff.1 hx _ (ball_mem_nhds x (pow_pos I0 N)), have E : (⋂ (n : ℕ) (H : n ≤ N), closed_ball (u (x n)) ((1 / 2) ^ n)) = ⋂ (n : ℕ) (H : n ≤ N), closed_ball (u (y n)) ((1 / 2) ^ n), { congr, ext1 n, congr, ext1 hn, have : x n = y n := apply_eq_of_dist_lt (mem_ball'.1 hxy) hn, rw this }, rw E, apply nonempty.mono _ ys, apply Inter_subset_Inter₂ }, obtain ⟨f, -, f_surj, f_cont⟩ : ∃ f : (ℕ → ℕ) → s, (∀ x : s, f x = x) ∧ surjective f ∧ continuous f, { apply exists_retraction_subtype_of_is_closed s_closed, simpa only [nonempty_coe_sort] using g_surj.nonempty }, exact ⟨g ∘ f, g_cont.comp f_cont, g_surj.comp f_surj⟩, end namespace pi_countable /-! ### Products of (possibly non-discrete) metric spaces -/ variables {ι : Type*} [encodable ι] {F : ι → Type*} [∀ i, metric_space (F i)] open encodable /-- Given a countable family of metric spaces, one may put a distance on their product `Π i, E i`. It is highly non-canonical, though, and therefore not registered as a global instance. The distance we use here is `dist x y = ∑' i, min (1/2)^(encode i) (dist (x i) (y i))`. -/ protected def has_dist : has_dist (Π i, F i) := ⟨λ x y, ∑' (i : ι), min ((1/2)^(encode i)) (dist (x i) (y i))⟩ local attribute [instance] pi_countable.has_dist lemma dist_eq_tsum (x y : Π i, F i) : dist x y = ∑' (i : ι), min ((1/2)^(encode i)) (dist (x i) (y i)) := rfl lemma dist_summable (x y : Π i, F i) : summable (λ (i : ι), min ((1/2)^(encode i)) (dist (x i) (y i))) := begin refine summable_of_nonneg_of_le (λ i, _) (λ i, min_le_left _ _) summable_geometric_two_encode, exact le_min (pow_nonneg (by norm_num) _) (dist_nonneg) end lemma min_dist_le_dist_pi (x y : Π i, F i) (i : ι) : min ((1/2)^(encode i)) (dist (x i) (y i)) ≤ dist x y := le_tsum (dist_summable x y) i (λ j hj, le_min (by simp) (dist_nonneg)) lemma dist_le_dist_pi_of_dist_lt {x y : Π i, F i} {i : ι} (h : dist x y < (1/2)^(encode i)) : dist (x i) (y i) ≤ dist x y := by simpa only [not_le.2 h, false_or] using min_le_iff.1 (min_dist_le_dist_pi x y i) open_locale big_operators topological_space open filter open_locale nnreal variable (E) /-- Given a countable family of metric spaces, one may put a distance on their product `Π i, E i`, defining the right topology and uniform structure. It is highly non-canonical, though, and therefore not registered as a global instance. The distance we use here is `dist x y = ∑' n, min (1/2)^(encode i) (dist (x n) (y n))`. -/ protected def metric_space : metric_space (Π i, F i) := { dist_self := λ x, by simp [dist_eq_tsum], dist_comm := λ x y, by simp [dist_eq_tsum, dist_comm], dist_triangle := λ x y z, begin have I : ∀ i, min ((1/2)^(encode i)) (dist (x i) (z i)) ≤ min ((1/2)^(encode i)) (dist (x i) (y i)) + min ((1/2)^(encode i)) (dist (y i) (z i)) := λ i, calc min ((1/2)^(encode i)) (dist (x i) (z i)) ≤ min ((1/2)^(encode i)) (dist (x i) (y i) + dist (y i) (z i)) : min_le_min le_rfl (dist_triangle _ _ _) ... = min ((1/2)^(encode i)) (min ((1/2)^(encode i)) (dist (x i) (y i)) + min ((1/2)^(encode i)) (dist (y i) (z i))) : begin convert congr_arg (coe : ℝ≥0 → ℝ) (min_add_distrib ((1/2 : ℝ≥0)^(encode i)) (nndist (x i) (y i)) (nndist (y i) (z i))); simp end ... ≤ min ((1/2)^(encode i)) (dist (x i) (y i)) + min ((1/2)^(encode i)) (dist (y i) (z i)) : min_le_right _ _, calc dist x z ≤ ∑' i, (min ((1/2)^(encode i)) (dist (x i) (y i)) + min ((1/2)^(encode i)) (dist (y i) (z i))) : tsum_le_tsum I (dist_summable x z) ((dist_summable x y).add (dist_summable y z)) ... = dist x y + dist y z : tsum_add (dist_summable x y) (dist_summable y z) end, eq_of_dist_eq_zero := begin assume x y hxy, ext1 n, rw [← dist_le_zero, ← hxy], apply dist_le_dist_pi_of_dist_lt, rw hxy, simp end, to_uniform_space := Pi.uniform_space _, uniformity_dist := begin have I0 : (0 : ℝ) ≤ 1/2, by norm_num, have I1 : (1/2 : ℝ) < 1, by norm_num, simp only [Pi.uniformity, comap_infi, gt_iff_lt, preimage_set_of_eq, comap_principal, pseudo_metric_space.uniformity_dist], apply le_antisymm, { simp only [le_infi_iff, le_principal_iff], assume ε εpos, obtain ⟨K, hK⟩ : ∃ (K : finset ι), ∑' (i : {j // j ∉ K}), (1/2 : ℝ)^(encode (i : ι)) < ε/2 := ((tendsto_order.1 (tendsto_tsum_compl_at_top_zero (λ (i : ι), (1/2 : ℝ)^(encode i)))).2 _ (half_pos εpos)).exists, obtain ⟨δ, δpos, hδ⟩ : ∃ (δ : ℝ) (δpos : 0 < δ), (K.card : ℝ) * δ ≤ ε/2, { rcases nat.eq_zero_or_pos K.card with hK|hK, { exact ⟨1, zero_lt_one, by simpa only [hK, nat.cast_zero, zero_mul] using (half_pos εpos).le⟩ }, { have Kpos : 0 < (K.card : ℝ) := nat.cast_pos.2 hK, refine ⟨(ε / 2) / (K.card : ℝ), (div_pos (half_pos εpos) Kpos), le_of_eq _⟩, field_simp [Kpos.ne'], ring } }, apply @mem_infi_of_Inter _ _ _ _ _ K.finite_to_set (λ i, {p : (Π (i : ι), F i) × Π (i : ι), F i | dist (p.fst i) (p.snd i) < δ}), { rintros ⟨i, hi⟩, refine mem_infi_of_mem δ (mem_infi_of_mem δpos _), simp only [prod.forall, imp_self, mem_principal] }, { rintros ⟨x, y⟩ hxy, simp only [mem_Inter, mem_set_of_eq, set_coe.forall, finset.mem_range, finset.mem_coe] at hxy, calc dist x y = ∑' (i : ι), min ((1/2)^(encode i)) (dist (x i) (y i)) : rfl ... = ∑ i in K, min ((1/2)^(encode i)) (dist (x i) (y i)) + ∑' (i : (↑K : set ι)ᶜ), min ((1/2)^(encode (i : ι))) (dist (x i) (y i)) : (sum_add_tsum_compl (dist_summable _ _)).symm ... ≤ ∑ i in K, (dist (x i) (y i)) + ∑' (i : (↑K : set ι)ᶜ), (1/2)^(encode (i : ι)) : begin refine add_le_add (finset.sum_le_sum (λ i hi, min_le_right _ _)) _, refine tsum_le_tsum (λ i, min_le_left _ _) _ _, { apply summable.subtype (dist_summable x y) (↑K : set ι)ᶜ }, { apply summable.subtype summable_geometric_two_encode (↑K : set ι)ᶜ } end ... < (∑ i in K, δ) + ε / 2 : begin apply add_lt_add_of_le_of_lt _ hK, apply finset.sum_le_sum (λ i hi, _), apply (hxy i _).le, simpa using hi end ... ≤ ε / 2 + ε / 2 : add_le_add_right (by simpa only [finset.sum_const, nsmul_eq_mul] using hδ) _ ... = ε : add_halves _ } }, { simp only [le_infi_iff, le_principal_iff], assume i ε εpos, refine mem_infi_of_mem (min ((1/2)^(encode i)) ε) _, have : 0 < min ((1/2)^(encode i)) ε := lt_min (by simp) εpos, refine mem_infi_of_mem this _, simp only [and_imp, prod.forall, set_of_subset_set_of, lt_min_iff, mem_principal], assume x y hn hε, calc dist (x i) (y i) ≤ dist x y : dist_le_dist_pi_of_dist_lt hn ... < ε : hε } end } end pi_countable