/- Copyright (c) 2019 Rohan Mitta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl, Yury Kudryashov -/ import analysis.specific_limits.basic import data.setoid.basic import dynamics.fixed_points.topology /-! # Contracting maps A Lipschitz continuous self-map with Lipschitz constant `K < 1` is called a *contracting map*. In this file we prove the Banach fixed point theorem, some explicit estimates on the rate of convergence, and some properties of the map sending a contracting map to its fixed point. ## Main definitions * `contracting_with K f` : a Lipschitz continuous self-map with `K < 1`; * `efixed_point` : given a contracting map `f` on a complete emetric space and a point `x` such that `edist x (f x) ≠ ∞`, `efixed_point f hf x hx` is the unique fixed point of `f` in `emetric.ball x ∞`; * `fixed_point` : the unique fixed point of a contracting map on a complete nonempty metric space. ## Tags contracting map, fixed point, Banach fixed point theorem -/ open_locale nnreal topological_space classical ennreal open filter function variables {α : Type*} /-- A map is said to be `contracting_with K`, if `K < 1` and `f` is `lipschitz_with K`. -/ def contracting_with [emetric_space α] (K : ℝ≥0) (f : α → α) := (K < 1) ∧ lipschitz_with K f namespace contracting_with variables [emetric_space α] [cs : complete_space α] {K : ℝ≥0} {f : α → α} open emetric set lemma to_lipschitz_with (hf : contracting_with K f) : lipschitz_with K f := hf.2 lemma one_sub_K_pos' (hf : contracting_with K f) : (0:ℝ≥0∞) < 1 - K := by simp [hf.1] lemma one_sub_K_ne_zero (hf : contracting_with K f) : (1:ℝ≥0∞) - K ≠ 0 := ne_of_gt hf.one_sub_K_pos' lemma one_sub_K_ne_top : (1:ℝ≥0∞) - K ≠ ∞ := by { norm_cast, exact ennreal.coe_ne_top } lemma edist_inequality (hf : contracting_with K f) {x y} (h : edist x y ≠ ∞) : edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - K) := suffices edist x y ≤ edist x (f x) + edist y (f y) + K * edist x y, by rwa [ennreal.le_div_iff_mul_le (or.inl hf.one_sub_K_ne_zero) (or.inl one_sub_K_ne_top), mul_comm, ennreal.sub_mul (λ _ _, h), one_mul, tsub_le_iff_right], calc edist x y ≤ edist x (f x) + edist (f x) (f y) + edist (f y) y : edist_triangle4 _ _ _ _ ... = edist x (f x) + edist y (f y) + edist (f x) (f y) : by rw [edist_comm y, add_right_comm] ... ≤ edist x (f x) + edist y (f y) + K * edist x y : add_le_add le_rfl (hf.2 _ _) lemma edist_le_of_fixed_point (hf : contracting_with K f) {x y} (h : edist x y ≠ ∞) (hy : is_fixed_pt f y) : edist x y ≤ (edist x (f x)) / (1 - K) := by simpa only [hy.eq, edist_self, add_zero] using hf.edist_inequality h lemma eq_or_edist_eq_top_of_fixed_points (hf : contracting_with K f) {x y} (hx : is_fixed_pt f x) (hy : is_fixed_pt f y) : x = y ∨ edist x y = ∞ := begin refine or_iff_not_imp_right.2 (λ h, edist_le_zero.1 _), simpa only [hx.eq, edist_self, add_zero, ennreal.zero_div] using hf.edist_le_of_fixed_point h hy end /-- If a map `f` is `contracting_with K`, and `s` is a forward-invariant set, then restriction of `f` to `s` is `contracting_with K` as well. -/ lemma restrict (hf : contracting_with K f) {s : set α} (hs : maps_to f s s) : contracting_with K (hs.restrict f s s) := ⟨hf.1, λ x y, hf.2 x y⟩ include cs /-- Banach fixed-point theorem, contraction mapping theorem, `emetric_space` version. A contracting map on a complete metric space has a fixed point. We include more conclusions in this theorem to avoid proving them again later. The main API for this theorem are the functions `efixed_point` and `fixed_point`, and lemmas about these functions. -/ theorem exists_fixed_point (hf : contracting_with K f) (x : α) (hx : edist x (f x) ≠ ∞) : ∃ y, is_fixed_pt f y ∧ tendsto (λ n, f^[n] x) at_top (𝓝 y) ∧ ∀ n:ℕ, edist (f^[n] x) y ≤ (edist x (f x)) * K^n / (1 - K) := have cauchy_seq (λ n, f^[n] x), from cauchy_seq_of_edist_le_geometric K (edist x (f x)) (ennreal.coe_lt_one_iff.2 hf.1) hx (hf.to_lipschitz_with.edist_iterate_succ_le_geometric x), let ⟨y, hy⟩ := cauchy_seq_tendsto_of_complete this in ⟨y, is_fixed_pt_of_tendsto_iterate hy hf.2.continuous.continuous_at, hy, edist_le_of_edist_le_geometric_of_tendsto K (edist x (f x)) (hf.to_lipschitz_with.edist_iterate_succ_le_geometric x) hy⟩ variable (f) -- avoid `efixed_point _` in pretty printer /-- Let `x` be a point of a complete emetric space. Suppose that `f` is a contracting map, and `edist x (f x) ≠ ∞`. Then `efixed_point` is the unique fixed point of `f` in `emetric.ball x ∞`. -/ noncomputable def efixed_point (hf : contracting_with K f) (x : α) (hx : edist x (f x) ≠ ∞) : α := classical.some $ hf.exists_fixed_point x hx variables {f} lemma efixed_point_is_fixed_pt (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : is_fixed_pt f (efixed_point f hf x hx) := (classical.some_spec $ hf.exists_fixed_point x hx).1 lemma tendsto_iterate_efixed_point (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : tendsto (λn, f^[n] x) at_top (𝓝 $ efixed_point f hf x hx) := (classical.some_spec $ hf.exists_fixed_point x hx).2.1 lemma apriori_edist_iterate_efixed_point_le (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) (n : ℕ) : edist (f^[n] x) (efixed_point f hf x hx) ≤ (edist x (f x)) * K^n / (1 - K) := (classical.some_spec $ hf.exists_fixed_point x hx).2.2 n lemma edist_efixed_point_le (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : edist x (efixed_point f hf x hx) ≤ (edist x (f x)) / (1 - K) := by { convert hf.apriori_edist_iterate_efixed_point_le hx 0, simp only [pow_zero, mul_one] } lemma edist_efixed_point_lt_top (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : edist x (efixed_point f hf x hx) < ∞ := (hf.edist_efixed_point_le hx).trans_lt (ennreal.mul_lt_top hx $ ennreal.inv_ne_top.2 hf.one_sub_K_ne_zero) lemma efixed_point_eq_of_edist_lt_top (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) {y : α} (hy : edist y (f y) ≠ ∞) (h : edist x y ≠ ∞) : efixed_point f hf x hx = efixed_point f hf y hy := begin refine (hf.eq_or_edist_eq_top_of_fixed_points _ _).elim id (λ h', false.elim (ne_of_lt _ h')); try { apply efixed_point_is_fixed_pt }, change edist_lt_top_setoid.rel _ _, transitivity x, by { symmetry, exact hf.edist_efixed_point_lt_top hx }, transitivity y, exacts [lt_top_iff_ne_top.2 h, hf.edist_efixed_point_lt_top hy] end omit cs /-- Banach fixed-point theorem for maps contracting on a complete subset. -/ theorem exists_fixed_point' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : ∃ y ∈ s, is_fixed_pt f y ∧ tendsto (λ n, f^[n] x) at_top (𝓝 y) ∧ ∀ n:ℕ, edist (f^[n] x) y ≤ (edist x (f x)) * K^n / (1 - K) := begin haveI := hsc.complete_space_coe, rcases hf.exists_fixed_point ⟨x, hxs⟩ hx with ⟨y, hfy, h_tendsto, hle⟩, refine ⟨y, y.2, subtype.ext_iff_val.1 hfy, _, λ n, _⟩, { convert (continuous_subtype_coe.tendsto _).comp h_tendsto, ext n, simp only [(∘), maps_to.iterate_restrict, maps_to.coe_restrict_apply, subtype.coe_mk] }, { convert hle n, rw [maps_to.iterate_restrict, eq_comm, maps_to.coe_restrict_apply, subtype.coe_mk] } end variable (f) -- avoid `efixed_point _` in pretty printer /-- Let `s` be a complete forward-invariant set of a self-map `f`. If `f` contracts on `s` and `x ∈ s` satisfies `edist x (f x) ≠ ∞`, then `efixed_point'` is the unique fixed point of the restriction of `f` to `s ∩ emetric.ball x ∞`. -/ noncomputable def efixed_point' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) (x : α) (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : α := classical.some $ hf.exists_fixed_point' hsc hsf hxs hx variables {f} lemma efixed_point_mem' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : efixed_point' f hsc hsf hf x hxs hx ∈ s := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).fst lemma efixed_point_is_fixed_pt' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : is_fixed_pt f (efixed_point' f hsc hsf hf x hxs hx) := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).snd.1 lemma tendsto_iterate_efixed_point' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : tendsto (λn, f^[n] x) at_top (𝓝 $ efixed_point' f hsc hsf hf x hxs hx) := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).snd.2.1 lemma apriori_edist_iterate_efixed_point_le' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) (n : ℕ) : edist (f^[n] x) (efixed_point' f hsc hsf hf x hxs hx) ≤ (edist x (f x)) * K^n / (1 - K) := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).snd.2.2 n lemma edist_efixed_point_le' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : edist x (efixed_point' f hsc hsf hf x hxs hx) ≤ (edist x (f x)) / (1 - K) := by { convert hf.apriori_edist_iterate_efixed_point_le' hsc hsf hxs hx 0, rw [pow_zero, mul_one] } lemma edist_efixed_point_lt_top' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : edist x (efixed_point' f hsc hsf hf x hxs hx) < ∞ := (hf.edist_efixed_point_le' hsc hsf hxs hx).trans_lt (ennreal.mul_lt_top hx $ ennreal.inv_ne_top.2 hf.one_sub_K_ne_zero) /-- If a globally contracting map `f` has two complete forward-invariant sets `s`, `t`, and `x ∈ s` is at a finite distance from `y ∈ t`, then the `efixed_point'` constructed by `x` is the same as the `efixed_point'` constructed by `y`. This lemma takes additional arguments stating that `f` contracts on `s` and `t` because this way it can be used to prove the desired equality with non-trivial proofs of these facts. -/ lemma efixed_point_eq_of_edist_lt_top' (hf : contracting_with K f) {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hfs : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) {t : set α} (htc : is_complete t) (htf : maps_to f t t) (hft : contracting_with K $ htf.restrict f t t) {y : α} (hyt : y ∈ t) (hy : edist y (f y) ≠ ∞) (hxy : edist x y ≠ ∞) : efixed_point' f hsc hsf hfs x hxs hx = efixed_point' f htc htf hft y hyt hy := begin refine (hf.eq_or_edist_eq_top_of_fixed_points _ _).elim id (λ h', false.elim (ne_of_lt _ h')); try { apply efixed_point_is_fixed_pt' }, change edist_lt_top_setoid.rel _ _, transitivity x, by { symmetry, apply edist_efixed_point_lt_top' }, transitivity y, exact lt_top_iff_ne_top.2 hxy, apply edist_efixed_point_lt_top' end end contracting_with namespace contracting_with variables [metric_space α] {K : ℝ≥0} {f : α → α} (hf : contracting_with K f) include hf lemma one_sub_K_pos (hf : contracting_with K f) : (0:ℝ) < 1 - K := sub_pos.2 hf.1 lemma dist_le_mul (x y : α) : dist (f x) (f y) ≤ K * dist x y := hf.to_lipschitz_with.dist_le_mul x y lemma dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1 - K) := suffices dist x y ≤ dist x (f x) + dist y (f y) + K * dist x y, by rwa [le_div_iff hf.one_sub_K_pos, mul_comm, sub_mul, one_mul, sub_le_iff_le_add], calc dist x y ≤ dist x (f x) + dist y (f y) + dist (f x) (f y) : dist_triangle4_right _ _ _ _ ... ≤ dist x (f x) + dist y (f y) + K * dist x y : add_le_add_left (hf.dist_le_mul _ _) _ lemma dist_le_of_fixed_point (x) {y} (hy : is_fixed_pt f y) : dist x y ≤ (dist x (f x)) / (1 - K) := by simpa only [hy.eq, dist_self, add_zero] using hf.dist_inequality x y theorem fixed_point_unique' {x y} (hx : is_fixed_pt f x) (hy : is_fixed_pt f y) : x = y := (hf.eq_or_edist_eq_top_of_fixed_points hx hy).resolve_right (edist_ne_top _ _) /-- Let `f` be a contracting map with constant `K`; let `g` be another map uniformly `C`-close to `f`. If `x` and `y` are their fixed points, then `dist x y ≤ C / (1 - K)`. -/ lemma dist_fixed_point_fixed_point_of_dist_le' (g : α → α) {x y} (hx : is_fixed_pt f x) (hy : is_fixed_pt g y) {C} (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist x y ≤ C / (1 - K) := calc dist x y = dist y x : dist_comm x y ... ≤ (dist y (f y)) / (1 - K) : hf.dist_le_of_fixed_point y hx ... = (dist (f y) (g y)) / (1 - K) : by rw [hy.eq, dist_comm] ... ≤ C / (1 - K) : (div_le_div_right hf.one_sub_K_pos).2 (hfg y) noncomputable theory variables [nonempty α] [complete_space α] variable (f) /-- The unique fixed point of a contracting map in a nonempty complete metric space. -/ def fixed_point : α := efixed_point f hf _ (edist_ne_top (classical.choice ‹nonempty α›) _) variable {f} /-- The point provided by `contracting_with.fixed_point` is actually a fixed point. -/ lemma fixed_point_is_fixed_pt : is_fixed_pt f (fixed_point f hf) := hf.efixed_point_is_fixed_pt _ lemma fixed_point_unique {x} (hx : is_fixed_pt f x) : x = fixed_point f hf := hf.fixed_point_unique' hx hf.fixed_point_is_fixed_pt lemma dist_fixed_point_le (x) : dist x (fixed_point f hf) ≤ (dist x (f x)) / (1 - K) := hf.dist_le_of_fixed_point x hf.fixed_point_is_fixed_pt /-- Aposteriori estimates on the convergence of iterates to the fixed point. -/ lemma aposteriori_dist_iterate_fixed_point_le (x n) : dist (f^[n] x) (fixed_point f hf) ≤ (dist (f^[n] x) (f^[n+1] x)) / (1 - K) := by { rw [iterate_succ'], apply hf.dist_fixed_point_le } lemma apriori_dist_iterate_fixed_point_le (x n) : dist (f^[n] x) (fixed_point f hf) ≤ (dist x (f x)) * K^n / (1 - K) := le_trans (hf.aposteriori_dist_iterate_fixed_point_le x n) $ (div_le_div_right hf.one_sub_K_pos).2 $ hf.to_lipschitz_with.dist_iterate_succ_le_geometric x n lemma tendsto_iterate_fixed_point (x) : tendsto (λn, f^[n] x) at_top (𝓝 $ fixed_point f hf) := begin convert tendsto_iterate_efixed_point hf (edist_ne_top x _), refine (fixed_point_unique _ _).symm, apply efixed_point_is_fixed_pt end lemma fixed_point_lipschitz_in_map {g : α → α} (hg : contracting_with K g) {C} (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist (fixed_point f hf) (fixed_point g hg) ≤ C / (1 - K) := hf.dist_fixed_point_fixed_point_of_dist_le' g hf.fixed_point_is_fixed_pt hg.fixed_point_is_fixed_pt hfg omit hf /-- If a map `f` has a contracting iterate `f^[n]`, then the fixed point of `f^[n]` is also a fixed point of `f`. -/ lemma is_fixed_pt_fixed_point_iterate {n : ℕ} (hf : contracting_with K (f^[n])) : is_fixed_pt f (hf.fixed_point (f^[n])) := begin set x := hf.fixed_point (f^[n]), have hx : (f^[n] x) = x := hf.fixed_point_is_fixed_pt, have := hf.to_lipschitz_with.dist_le_mul x (f x), rw [← iterate_succ_apply, iterate_succ_apply', hx] at this, contrapose! this, have := dist_pos.2 (ne.symm this), simpa only [nnreal.coe_one, one_mul, nnreal.val_eq_coe] using (mul_lt_mul_right this).mpr hf.left end end contracting_with