/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import topology.subset_properties import topology.connected import topology.algebra.monoid import topology.continuous_function.basic import tactic.tfae import tactic.fin_cases /-! # Locally constant functions This file sets up the theory of locally constant function from a topological space to a type. ## Main definitions and constructions * `is_locally_constant f` : a map `f : X → Y` where `X` is a topological space is locally constant if every set in `Y` has an open preimage. * `locally_constant X Y` : the type of locally constant maps from `X` to `Y` * `locally_constant.map` : push-forward of locally constant maps * `locally_constant.comap` : pull-back of locally constant maps -/ variables {X Y Z α : Type*} [topological_space X] open set filter open_locale topological_space /-- A function between topological spaces is locally constant if the preimage of any set is open. -/ def is_locally_constant (f : X → Y) : Prop := ∀ s : set Y, is_open (f ⁻¹' s) namespace is_locally_constant protected lemma tfae (f : X → Y) : tfae [is_locally_constant f, ∀ x, ∀ᶠ x' in 𝓝 x, f x' = f x, ∀ x, is_open {x' | f x' = f x}, ∀ y, is_open (f ⁻¹' {y}), ∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x] := begin tfae_have : 1 → 4, from λ h y, h {y}, tfae_have : 4 → 3, from λ h x, h (f x), tfae_have : 3 → 2, from λ h x, is_open.mem_nhds (h x) rfl, tfae_have : 2 → 5, { intros h x, rcases mem_nhds_iff.1 (h x) with ⟨U, eq, hU, hx⟩, exact ⟨U, hU, hx, eq⟩ }, tfae_have : 5 → 1, { intros h s, refine is_open_iff_forall_mem_open.2 (λ x hx, _), rcases h x with ⟨U, hU, hxU, eq⟩, exact ⟨U, λ x' hx', mem_preimage.2 $ (eq x' hx').symm ▸ hx, hU, hxU⟩ }, tfae_finish end @[nontriviality] lemma of_discrete [discrete_topology X] (f : X → Y) : is_locally_constant f := λ s, is_open_discrete _ lemma is_open_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) : is_open {x | f x = y} := hf {y} lemma is_closed_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) : is_closed {x | f x = y} := ⟨hf {y}ᶜ⟩ lemma is_clopen_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) : is_clopen {x | f x = y} := ⟨is_open_fiber hf _, is_closed_fiber hf _⟩ lemma iff_exists_open (f : X → Y) : is_locally_constant f ↔ ∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x := (is_locally_constant.tfae f).out 0 4 lemma iff_eventually_eq (f : X → Y) : is_locally_constant f ↔ ∀ x, ∀ᶠ y in 𝓝 x, f y = f x := (is_locally_constant.tfae f).out 0 1 lemma exists_open {f : X → Y} (hf : is_locally_constant f) (x : X) : ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x := (iff_exists_open f).1 hf x protected lemma eventually_eq {f : X → Y} (hf : is_locally_constant f) (x : X) : ∀ᶠ y in 𝓝 x, f y = f x := (iff_eventually_eq f).1 hf x protected lemma continuous [topological_space Y] {f : X → Y} (hf : is_locally_constant f) : continuous f := ⟨λ U hU, hf _⟩ lemma iff_continuous {_ : topological_space Y} [discrete_topology Y] (f : X → Y) : is_locally_constant f ↔ continuous f := ⟨is_locally_constant.continuous, λ h s, h.is_open_preimage s (is_open_discrete _)⟩ lemma iff_continuous_bot (f : X → Y) : is_locally_constant f ↔ @continuous X Y _ ⊥ f := iff_continuous f lemma of_constant (f : X → Y) (h : ∀ x y, f x = f y) : is_locally_constant f := (iff_eventually_eq f).2 $ λ x, eventually_of_forall $ λ x', h _ _ lemma const (y : Y) : is_locally_constant (function.const X y) := of_constant _ $ λ _ _, rfl lemma comp {f : X → Y} (hf : is_locally_constant f) (g : Y → Z) : is_locally_constant (g ∘ f) := λ s, by { rw set.preimage_comp, exact hf _ } lemma prod_mk {Y'} {f : X → Y} {f' : X → Y'} (hf : is_locally_constant f) (hf' : is_locally_constant f') : is_locally_constant (λ x, (f x, f' x)) := (iff_eventually_eq _).2 $ λ x, (hf.eventually_eq x).mp $ (hf'.eventually_eq x).mono $ λ x' hf' hf, prod.ext hf hf' lemma comp₂ {Y₁ Y₂ Z : Type*} {f : X → Y₁} {g : X → Y₂} (hf : is_locally_constant f) (hg : is_locally_constant g) (h : Y₁ → Y₂ → Z) : is_locally_constant (λ x, h (f x) (g x)) := (hf.prod_mk hg).comp (λ x : Y₁ × Y₂, h x.1 x.2) lemma comp_continuous [topological_space Y] {g : Y → Z} {f : X → Y} (hg : is_locally_constant g) (hf : continuous f) : is_locally_constant (g ∘ f) := λ s, by { rw set.preimage_comp, exact hf.is_open_preimage _ (hg _) } /-- A locally constant function is constant on any preconnected set. -/ lemma apply_eq_of_is_preconnected {f : X → Y} (hf : is_locally_constant f) {s : set X} (hs : is_preconnected s) {x y : X} (hx : x ∈ s) (hy : y ∈ s) : f x = f y := begin let U := f ⁻¹' {f y}, suffices : x ∉ Uᶜ, from not_not.1 this, intro hxV, specialize hs U Uᶜ (hf {f y}) (hf {f y}ᶜ) _ ⟨y, ⟨hy, rfl⟩⟩ ⟨x, ⟨hx, hxV⟩⟩, { simp only [union_compl_self, subset_univ] }, { simpa only [inter_empty, not_nonempty_empty, inter_compl_self] using hs } end lemma iff_is_const [preconnected_space X] {f : X → Y} : is_locally_constant f ↔ ∀ x y, f x = f y := ⟨λ h x y, h.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial, of_constant _⟩ lemma range_finite [compact_space X] {f : X → Y} (hf : is_locally_constant f) : (set.range f).finite := begin letI : topological_space Y := ⊥, haveI : discrete_topology Y := ⟨rfl⟩, rw @iff_continuous X Y ‹_› ‹_› at hf, exact (is_compact_range hf).finite_of_discrete end @[to_additive] lemma one [has_one Y] : is_locally_constant (1 : X → Y) := const 1 @[to_additive] lemma inv [has_inv Y] ⦃f : X → Y⦄ (hf : is_locally_constant f) : is_locally_constant f⁻¹ := hf.comp (λ x, x⁻¹) @[to_additive] lemma mul [has_mul Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) : is_locally_constant (f * g) := hf.comp₂ hg (*) @[to_additive] lemma div [has_div Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) : is_locally_constant (f / g) := hf.comp₂ hg (/) /-- If a composition of a function `f` followed by an injection `g` is locally constant, then the locally constant property descends to `f`. -/ lemma desc {α β : Type*} (f : X → α) (g : α → β) (h : is_locally_constant (g ∘ f)) (inj : function.injective g) : is_locally_constant f := begin rw (is_locally_constant.tfae f).out 0 3, intros a, have : f ⁻¹' {a} = (g ∘ f) ⁻¹' { g a }, { ext x, simp only [mem_singleton_iff, function.comp_app, mem_preimage], exact ⟨λ h, by rw h, λ h, inj h⟩ }, rw this, apply h, end lemma of_constant_on_connected_components [locally_connected_space X] {f : X → Y} (h : ∀ x, ∀ y ∈ connected_component x, f y = f x) : is_locally_constant f := begin rw iff_exists_open, exact λ x, ⟨connected_component x, is_open_connected_component, mem_connected_component, h x⟩, end lemma of_constant_on_preconnected_clopens [locally_connected_space X] {f : X → Y} (h : ∀ U : set X, is_preconnected U → is_clopen U → ∀ x ∈ U, ∀ y ∈ U, f y = f x) : is_locally_constant f := of_constant_on_connected_components (λ x, h (connected_component x) is_preconnected_connected_component is_clopen_connected_component x mem_connected_component) end is_locally_constant /-- A (bundled) locally constant function from a topological space `X` to a type `Y`. -/ structure locally_constant (X Y : Type*) [topological_space X] := (to_fun : X → Y) (is_locally_constant : is_locally_constant to_fun) namespace locally_constant instance [inhabited Y] : inhabited (locally_constant X Y) := ⟨⟨_, is_locally_constant.const default⟩⟩ instance : has_coe_to_fun (locally_constant X Y) (λ _, X → Y) := ⟨locally_constant.to_fun⟩ initialize_simps_projections locally_constant (to_fun → apply) @[simp] lemma to_fun_eq_coe (f : locally_constant X Y) : f.to_fun = f := rfl @[simp] lemma coe_mk (f : X → Y) (h) : ⇑(⟨f, h⟩ : locally_constant X Y) = f := rfl theorem congr_fun {f g : locally_constant X Y} (h : f = g) (x : X) : f x = g x := congr_arg (λ h : locally_constant X Y, h x) h theorem congr_arg (f : locally_constant X Y) {x y : X} (h : x = y) : f x = f y := congr_arg (λ x : X, f x) h theorem coe_injective : @function.injective (locally_constant X Y) (X → Y) coe_fn | ⟨f, hf⟩ ⟨g, hg⟩ h := have f = g, from h, by subst f @[simp, norm_cast] theorem coe_inj {f g : locally_constant X Y} : (f : X → Y) = g ↔ f = g := coe_injective.eq_iff @[ext] theorem ext ⦃f g : locally_constant X Y⦄ (h : ∀ x, f x = g x) : f = g := coe_injective (funext h) theorem ext_iff {f g : locally_constant X Y} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, λ h, ext h⟩ section codomain_topological_space variables [topological_space Y] (f : locally_constant X Y) protected lemma continuous : continuous f := f.is_locally_constant.continuous /-- We can turn a locally-constant function into a bundled `continuous_map`. -/ def to_continuous_map : C(X, Y) := ⟨f, f.continuous⟩ /-- As a shorthand, `locally_constant.to_continuous_map` is available as a coercion -/ instance : has_coe (locally_constant X Y) C(X, Y) := ⟨to_continuous_map⟩ @[simp] lemma to_continuous_map_eq_coe : f.to_continuous_map = f := rfl @[simp] lemma coe_continuous_map : ((f : C(X, Y)) : X → Y) = (f : X → Y) := rfl lemma to_continuous_map_injective : function.injective (to_continuous_map : locally_constant X Y → C(X, Y)) := λ _ _ h, ext (continuous_map.congr_fun h) end codomain_topological_space /-- The constant locally constant function on `X` with value `y : Y`. -/ def const (X : Type*) {Y : Type*} [topological_space X] (y : Y) : locally_constant X Y := ⟨function.const X y, is_locally_constant.const _⟩ @[simp] lemma coe_const (y : Y) : (const X y : X → Y) = function.const X y := rfl /-- The locally constant function to `fin 2` associated to a clopen set. -/ def of_clopen {X : Type*} [topological_space X] {U : set X} [∀ x, decidable (x ∈ U)] (hU : is_clopen U) : locally_constant X (fin 2) := { to_fun := λ x, if x ∈ U then 0 else 1, is_locally_constant := begin rw (is_locally_constant.tfae (λ x, if x ∈ U then (0 : fin 2) else 1)).out 0 3, intros e, fin_cases e, { convert hU.1 using 1, ext, simp only [nat.one_ne_zero, mem_singleton_iff, fin.one_eq_zero_iff, mem_preimage, ite_eq_left_iff], tauto }, { rw ← is_closed_compl_iff, convert hU.2, ext, simp } end } @[simp] lemma of_clopen_fiber_zero {X : Type*} [topological_space X] {U : set X} [∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({0} : set (fin 2)) = U := begin ext, simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff, fin.one_eq_zero_iff, coe_mk, mem_preimage, ite_eq_left_iff], tauto, end @[simp] lemma of_clopen_fiber_one {X : Type*} [topological_space X] {U : set X} [∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({1} : set (fin 2)) = Uᶜ := begin ext, simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff, coe_mk, fin.zero_eq_one_iff, mem_preimage, ite_eq_right_iff, mem_compl_eq], tauto, end lemma locally_constant_eq_of_fiber_zero_eq {X : Type*} [topological_space X] (f g : locally_constant X (fin 2)) (h : f ⁻¹' ({0} : set (fin 2)) = g ⁻¹' {0}) : f = g := begin simp only [set.ext_iff, mem_singleton_iff, mem_preimage] at h, ext1 x, exact fin.fin_two_eq_of_eq_zero_iff (h x) end lemma range_finite [compact_space X] (f : locally_constant X Y) : (set.range f).finite := f.is_locally_constant.range_finite lemma apply_eq_of_is_preconnected (f : locally_constant X Y) {s : set X} (hs : is_preconnected s) {x y : X} (hx : x ∈ s) (hy : y ∈ s) : f x = f y := f.is_locally_constant.apply_eq_of_is_preconnected hs hx hy lemma apply_eq_of_preconnected_space [preconnected_space X] (f : locally_constant X Y) (x y : X) : f x = f y := f.is_locally_constant.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial lemma eq_const [preconnected_space X] (f : locally_constant X Y) (x : X) : f = const X (f x) := ext $ λ y, apply_eq_of_preconnected_space f _ _ lemma exists_eq_const [preconnected_space X] [nonempty Y] (f : locally_constant X Y) : ∃ y, f = const X y := begin rcases classical.em (nonempty X) with ⟨⟨x⟩⟩|hX, { exact ⟨f x, f.eq_const x⟩ }, { exact ⟨classical.arbitrary Y, ext $ λ x, (hX ⟨x⟩).elim⟩ } end /-- Push forward of locally constant maps under any map, by post-composition. -/ def map (f : Y → Z) : locally_constant X Y → locally_constant X Z := λ g, ⟨f ∘ g, λ s, by { rw set.preimage_comp, apply g.is_locally_constant }⟩ @[simp] lemma map_apply (f : Y → Z) (g : locally_constant X Y) : ⇑(map f g) = f ∘ g := rfl @[simp] lemma map_id : @map X Y Y _ id = id := by { ext, refl } @[simp] lemma map_comp {Y₁ Y₂ Y₃ : Type*} (g : Y₂ → Y₃) (f : Y₁ → Y₂) : @map X _ _ _ g ∘ map f = map (g ∘ f) := by { ext, refl } /-- Given a locally constant function to `α → β`, construct a family of locally constant functions with values in β indexed by α. -/ def flip {X α β : Type*} [topological_space X] (f : locally_constant X (α → β)) (a : α) : locally_constant X β := f.map (λ f, f a) /-- If α is finite, this constructs a locally constant function to `α → β` given a family of locally constant functions with values in β indexed by α. -/ def unflip {X α β : Type*} [fintype α] [topological_space X] (f : α → locally_constant X β) : locally_constant X (α → β) := { to_fun := λ x a, f a x, is_locally_constant := begin rw (is_locally_constant.tfae (λ x a, f a x)).out 0 3, intros g, have : (λ (x : X) (a : α), f a x) ⁻¹' {g} = ⋂ (a : α), (f a) ⁻¹' {g a}, by tidy, rw this, apply is_open_Inter, intros a, apply (f a).is_locally_constant, end } @[simp] lemma unflip_flip {X α β : Type*} [fintype α] [topological_space X] (f : locally_constant X (α → β)) : unflip f.flip = f := by { ext, refl } @[simp] lemma flip_unflip {X α β : Type*} [fintype α] [topological_space X] (f : α → locally_constant X β) : (unflip f).flip = f := by { ext, refl } section comap open_locale classical variables [topological_space Y] /-- Pull back of locally constant maps under any map, by pre-composition. This definition only makes sense if `f` is continuous, in which case it sends locally constant functions to their precomposition with `f`. See also `locally_constant.coe_comap`. -/ noncomputable def comap (f : X → Y) : locally_constant Y Z → locally_constant X Z := if hf : continuous f then λ g, ⟨g ∘ f, g.is_locally_constant.comp_continuous hf⟩ else begin by_cases H : nonempty X, { introsI g, exact const X (g $ f $ classical.arbitrary X) }, { intro g, refine ⟨λ x, (H ⟨x⟩).elim, _⟩, intro s, rw is_open_iff_nhds, intro x, exact (H ⟨x⟩).elim } end @[simp] lemma coe_comap (f : X → Y) (g : locally_constant Y Z) (hf : continuous f) : ⇑(comap f g) = g ∘ f := by { rw [comap, dif_pos hf], refl } @[simp] lemma comap_id : @comap X X Z _ _ id = id := by { ext, simp only [continuous_id, id.def, function.comp.right_id, coe_comap] } lemma comap_comp [topological_space Z] (f : X → Y) (g : Y → Z) (hf : continuous f) (hg : continuous g) : @comap _ _ α _ _ f ∘ comap g = comap (g ∘ f) := by { ext, simp only [hf, hg, hg.comp hf, coe_comap] } lemma comap_const (f : X → Y) (y : Y) (h : ∀ x, f x = y) : (comap f : locally_constant Y Z → locally_constant X Z) = λ g, ⟨λ x, g y, is_locally_constant.const _⟩ := begin ext, rw coe_comap, { simp only [h, coe_mk, function.comp_app] }, { rw show f = λ x, y, by ext; apply h, exact continuous_const } end end comap section desc /-- If a locally constant function factors through an injection, then it factors through a locally constant function. -/ def desc {X α β : Type*} [topological_space X] {g : α → β} (f : X → α) (h : locally_constant X β) (cond : g ∘ f = h) (inj : function.injective g) : locally_constant X α := { to_fun := f, is_locally_constant := is_locally_constant.desc _ g (by { rw cond, exact h.2 }) inj } @[simp] lemma coe_desc {X α β : Type*} [topological_space X] (f : X → α) (g : α → β) (h : locally_constant X β) (cond : g ∘ f = h) (inj : function.injective g) : ⇑(desc f h cond inj) = f := rfl end desc section indicator variables {R : Type*} [has_one R] {U : set X} (f : locally_constant X R) open_locale classical /-- Given a clopen set `U` and a locally constant function `f`, `locally_constant.mul_indicator` returns the locally constant function that is `f` on `U` and `1` otherwise. -/ @[to_additive /-" Given a clopen set `U` and a locally constant function `f`, `locally_constant.indicator` returns the locally constant function that is `f` on `U` and `0` otherwise. "-/, simps] noncomputable def mul_indicator (hU : is_clopen U) : locally_constant X R := { to_fun := set.mul_indicator U f, is_locally_constant := begin rw is_locally_constant.iff_exists_open, rintros x, obtain ⟨V, hV, hx, h'⟩ := (is_locally_constant.iff_exists_open _).1 f.is_locally_constant x, by_cases x ∈ U, { refine ⟨U ∩ V, is_open.inter hU.1 hV, set.mem_inter h hx, _⟩, rintros y hy, rw set.mem_inter_iff at hy, rw [set.mul_indicator_of_mem hy.1, set.mul_indicator_of_mem h], apply h' y hy.2, }, { rw ←set.mem_compl_iff at h, refine ⟨Uᶜ, (is_clopen.compl hU).1, h, _⟩, rintros y hy, rw set.mem_compl_iff at h, rw set.mem_compl_iff at hy, simp [h, hy], }, end, } variables (a : X) @[to_additive] theorem mul_indicator_apply_eq_if (hU : is_clopen U) : mul_indicator f hU a = if a ∈ U then f a else 1 := set.mul_indicator_apply U f a variables {a} @[to_additive] theorem mul_indicator_of_mem (hU : is_clopen U) (h : a ∈ U) : f.mul_indicator hU a = f a := by{ rw mul_indicator_apply, apply set.mul_indicator_of_mem h, } @[to_additive] theorem mul_indicator_of_not_mem (hU : is_clopen U) (h : a ∉ U) : f.mul_indicator hU a = 1 := by{ rw mul_indicator_apply, apply set.mul_indicator_of_not_mem h, } end indicator end locally_constant