/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import topology.constructions import topology.algebra.monoid /-! # Topology on lists and vectors -/ open topological_space set filter open_locale topological_space filter variables {α : Type*} {β : Type*} [topological_space α] [topological_space β] instance : topological_space (list α) := topological_space.mk_of_nhds (traverse nhds) lemma nhds_list (as : list α) : 𝓝 as = traverse 𝓝 as := begin refine nhds_mk_of_nhds _ _ _ _, { assume l, induction l, case list.nil { exact le_rfl }, case list.cons : a l ih { suffices : list.cons <$> pure a <*> pure l ≤ list.cons <$> 𝓝 a <*> traverse 𝓝 l, { simpa only [] with functor_norm using this }, exact filter.seq_mono (filter.map_mono $ pure_le_nhds a) ih } }, { assume l s hs, rcases (mem_traverse_iff _ _).1 hs with ⟨u, hu, hus⟩, clear as hs, have : ∃v:list (set α), l.forall₂ (λa s, is_open s ∧ a ∈ s) v ∧ sequence v ⊆ s, { induction hu generalizing s, case list.forall₂.nil : hs this { existsi [], simpa only [list.forall₂_nil_left_iff, exists_eq_left] }, case list.forall₂.cons : a s as ss ht h ih t hts { rcases mem_nhds_iff.1 ht with ⟨u, hut, hu⟩, rcases ih (subset.refl _) with ⟨v, hv, hvss⟩, exact ⟨u::v, list.forall₂.cons hu hv, subset.trans (set.seq_mono (set.image_subset _ hut) hvss) hts⟩ } }, rcases this with ⟨v, hv, hvs⟩, refine ⟨sequence v, mem_traverse _ _ _, hvs, _⟩, { exact hv.imp (assume a s ⟨hs, ha⟩, is_open.mem_nhds hs ha) }, { assume u hu, have hu := (list.mem_traverse _ _).1 hu, have : list.forall₂ (λa s, is_open s ∧ a ∈ s) u v, { refine list.forall₂.flip _, replace hv := hv.flip, simp only [list.forall₂_and_left, flip] at ⊢ hv, exact ⟨hv.1, hu.flip⟩ }, refine mem_of_superset _ hvs, exact mem_traverse _ _ (this.imp $ assume a s ⟨hs, ha⟩, is_open.mem_nhds hs ha) } } end @[simp] lemma nhds_nil : 𝓝 ([] : list α) = pure [] := by rw [nhds_list, list.traverse_nil _]; apply_instance lemma nhds_cons (a : α) (l : list α) : 𝓝 (a :: l) = list.cons <$> 𝓝 a <*> 𝓝 l := by rw [nhds_list, list.traverse_cons _, ← nhds_list]; apply_instance lemma list.tendsto_cons {a : α} {l : list α} : tendsto (λp:α×list α, list.cons p.1 p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (a :: l)) := by rw [nhds_cons, tendsto, filter.map_prod]; exact le_rfl lemma filter.tendsto.cons {α : Type*} {f : α → β} {g : α → list β} {a : _root_.filter α} {b : β} {l : list β} (hf : tendsto f a (𝓝 b)) (hg : tendsto g a (𝓝 l)) : tendsto (λa, list.cons (f a) (g a)) a (𝓝 (b :: l)) := list.tendsto_cons.comp (tendsto.prod_mk hf hg) namespace list lemma tendsto_cons_iff {β : Type*} {f : list α → β} {b : _root_.filter β} {a : α} {l : list α} : tendsto f (𝓝 (a :: l)) b ↔ tendsto (λp:α×list α, f (p.1 :: p.2)) (𝓝 a ×ᶠ 𝓝 l) b := have 𝓝 (a :: l) = (𝓝 a ×ᶠ 𝓝 l).map (λp:α×list α, (p.1 :: p.2)), begin simp only [nhds_cons, filter.prod_eq, (filter.map_def _ _).symm, (filter.seq_eq_filter_seq _ _).symm], simp [-filter.seq_eq_filter_seq, -filter.map_def, (∘)] with functor_norm, end, by rw [this, filter.tendsto_map'_iff] lemma continuous_cons : continuous (λ x : α × list α, (x.1 :: x.2 : list α)) := continuous_iff_continuous_at.mpr $ λ ⟨x, y⟩, continuous_at_fst.cons continuous_at_snd lemma tendsto_nhds {β : Type*} {f : list α → β} {r : list α → _root_.filter β} (h_nil : tendsto f (pure []) (r [])) (h_cons : ∀l a, tendsto f (𝓝 l) (r l) → tendsto (λp:α×list α, f (p.1 :: p.2)) (𝓝 a ×ᶠ 𝓝 l) (r (a::l))) : ∀l, tendsto f (𝓝 l) (r l) | [] := by rwa [nhds_nil] | (a::l) := by rw [tendsto_cons_iff]; exact h_cons l a (tendsto_nhds l) lemma continuous_at_length : ∀(l : list α), continuous_at list.length l := begin simp only [continuous_at, nhds_discrete], refine tendsto_nhds _ _, { exact tendsto_pure_pure _ _ }, { assume l a ih, dsimp only [list.length], refine tendsto.comp (tendsto_pure_pure (λx, x + 1) _) _, refine tendsto.comp ih tendsto_snd } end lemma tendsto_insert_nth' {a : α} : ∀{n : ℕ} {l : list α}, tendsto (λp:α×list α, insert_nth n p.1 p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (insert_nth n a l)) | 0 l := tendsto_cons | (n+1) [] := by simp | (n+1) (a'::l) := have 𝓝 a ×ᶠ 𝓝 (a' :: l) = (𝓝 a ×ᶠ (𝓝 a' ×ᶠ 𝓝 l)).map (λp:α×α×list α, (p.1, p.2.1 :: p.2.2)), begin simp only [nhds_cons, filter.prod_eq, ← filter.map_def, ← filter.seq_eq_filter_seq], simp [-filter.seq_eq_filter_seq, -filter.map_def, (∘)] with functor_norm end, begin rw [this, tendsto_map'_iff], exact (tendsto_fst.comp tendsto_snd).cons ((@tendsto_insert_nth' n l).comp $ tendsto_fst.prod_mk $ tendsto_snd.comp tendsto_snd) end lemma tendsto_insert_nth {β} {n : ℕ} {a : α} {l : list α} {f : β → α} {g : β → list α} {b : _root_.filter β} (hf : tendsto f b (𝓝 a)) (hg : tendsto g b (𝓝 l)) : tendsto (λb:β, insert_nth n (f b) (g b)) b (𝓝 (insert_nth n a l)) := tendsto_insert_nth'.comp (tendsto.prod_mk hf hg) lemma continuous_insert_nth {n : ℕ} : continuous (λp:α×list α, insert_nth n p.1 p.2) := continuous_iff_continuous_at.mpr $ assume ⟨a, l⟩, by rw [continuous_at, nhds_prod_eq]; exact tendsto_insert_nth' lemma tendsto_remove_nth : ∀{n : ℕ} {l : list α}, tendsto (λl, remove_nth l n) (𝓝 l) (𝓝 (remove_nth l n)) | _ [] := by rw [nhds_nil]; exact tendsto_pure_nhds _ _ | 0 (a::l) := by rw [tendsto_cons_iff]; exact tendsto_snd | (n+1) (a::l) := begin rw [tendsto_cons_iff], dsimp [remove_nth], exact tendsto_fst.cons ((@tendsto_remove_nth n l).comp tendsto_snd) end lemma continuous_remove_nth {n : ℕ} : continuous (λl : list α, remove_nth l n) := continuous_iff_continuous_at.mpr $ assume a, tendsto_remove_nth @[to_additive] lemma tendsto_prod [monoid α] [has_continuous_mul α] {l : list α} : tendsto list.prod (𝓝 l) (𝓝 l.prod) := begin induction l with x l ih, { simp [nhds_nil, mem_of_mem_nhds, tendsto_pure_left] {contextual := tt} }, simp_rw [tendsto_cons_iff, prod_cons], have := continuous_iff_continuous_at.mp continuous_mul (x, l.prod), rw [continuous_at, nhds_prod_eq] at this, exact this.comp (tendsto_id.prod_map ih) end @[to_additive] lemma continuous_prod [monoid α] [has_continuous_mul α] : continuous (prod : list α → α) := continuous_iff_continuous_at.mpr $ λ l, tendsto_prod end list namespace vector open list instance (n : ℕ) : topological_space (vector α n) := by unfold vector; apply_instance lemma tendsto_cons {n : ℕ} {a : α} {l : vector α n}: tendsto (λp:α×vector α n, p.1 ::ᵥ p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (a ::ᵥ l)) := by { simp [tendsto_subtype_rng, ←subtype.val_eq_coe, cons_val], exact tendsto_fst.cons (tendsto.comp continuous_at_subtype_coe tendsto_snd) } lemma tendsto_insert_nth {n : ℕ} {i : fin (n+1)} {a:α} : ∀{l:vector α n}, tendsto (λp:α×vector α n, insert_nth p.1 i p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (insert_nth a i l)) | ⟨l, hl⟩ := begin rw [insert_nth, tendsto_subtype_rng], simp [insert_nth_val], exact list.tendsto_insert_nth tendsto_fst (tendsto.comp continuous_at_subtype_coe tendsto_snd : _) end lemma continuous_insert_nth' {n : ℕ} {i : fin (n+1)} : continuous (λp:α×vector α n, insert_nth p.1 i p.2) := continuous_iff_continuous_at.mpr $ assume ⟨a, l⟩, by rw [continuous_at, nhds_prod_eq]; exact tendsto_insert_nth lemma continuous_insert_nth {n : ℕ} {i : fin (n+1)} {f : β → α} {g : β → vector α n} (hf : continuous f) (hg : continuous g) : continuous (λb, insert_nth (f b) i (g b)) := continuous_insert_nth'.comp (hf.prod_mk hg : _) lemma continuous_at_remove_nth {n : ℕ} {i : fin (n+1)} : ∀{l:vector α (n+1)}, continuous_at (remove_nth i) l | ⟨l, hl⟩ := -- ∀{l:vector α (n+1)}, tendsto (remove_nth i) (𝓝 l) (𝓝 (remove_nth i l)) --| ⟨l, hl⟩ := begin rw [continuous_at, remove_nth, tendsto_subtype_rng], simp only [← subtype.val_eq_coe, vector.remove_nth_val], exact tendsto.comp list.tendsto_remove_nth continuous_at_subtype_coe, end lemma continuous_remove_nth {n : ℕ} {i : fin (n+1)} : continuous (remove_nth i : vector α (n+1) → vector α n) := continuous_iff_continuous_at.mpr $ assume ⟨a, l⟩, continuous_at_remove_nth end vector