/- Copyright (c) 2019 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton, Mario Carneiro, Isabel Longbottom, Scott Morrison, Apurva Nakade -/ import set_theory.game.pgame import tactic.abel /-! # Combinatorial games. In this file we define the quotient of pre-games by the equivalence relation `p ≈ q ↔ p ≤ q ∧ q ≤ p` (its `antisymmetrization`), and construct an instance `add_comm_group game`, as well as an instance `partial_order game`. ## Multiplication on pre-games We define the operations of multiplication and inverse on pre-games, and prove a few basic theorems about them. Multiplication is not well-behaved under equivalence of pre-games i.e. `x ≈ y` does not imply `x * z ≈ y * z`. Hence, multiplication is not a well-defined operation on games. Nevertheless, the abelian group structure on games allows us to simplify many proofs for pre-games. -/ open function pgame open_locale pgame universes u instance pgame.setoid : setoid pgame := ⟨(≈), equiv_refl, @pgame.equiv.symm, @pgame.equiv.trans⟩ /-- The type of combinatorial games. In ZFC, a combinatorial game is constructed from two sets of combinatorial games that have been constructed at an earlier stage. To do this in type theory, we say that a combinatorial pre-game is built inductively from two families of combinatorial games indexed over any type in Type u. The resulting type `pgame.{u}` lives in `Type (u+1)`, reflecting that it is a proper class in ZFC. A combinatorial game is then constructed by quotienting by the equivalence `x ≈ y ↔ x ≤ y ∧ y ≤ x`. -/ abbreviation game := quotient pgame.setoid namespace game instance : add_comm_group_with_one game := { zero := ⟦0⟧, one := ⟦1⟧, neg := quot.lift (λ x, ⟦-x⟧) (λ x y h, quot.sound ((@neg_equiv_neg_iff x y).2 h)), add := quotient.lift₂ (λ x y : pgame, ⟦x + y⟧) (λ x₁ y₁ x₂ y₂ hx hy, quot.sound (pgame.add_congr hx hy)), add_zero := by { rintro ⟨x⟩, exact quot.sound (add_zero_equiv x) }, zero_add := by { rintro ⟨x⟩, exact quot.sound (zero_add_equiv x) }, add_assoc := by { rintros ⟨x⟩ ⟨y⟩ ⟨z⟩, exact quot.sound add_assoc_equiv }, add_left_neg := by { rintro ⟨x⟩, exact quot.sound (add_left_neg_equiv x) }, add_comm := by { rintros ⟨x⟩ ⟨y⟩, exact quot.sound add_comm_equiv } } instance : inhabited game := ⟨0⟩ instance : partial_order game := { le := quotient.lift₂ (≤) (λ x₁ y₁ x₂ y₂ hx hy, propext (le_congr hx hy)), le_refl := by { rintro ⟨x⟩, exact le_refl x }, le_trans := by { rintro ⟨x⟩ ⟨y⟩ ⟨z⟩, exact @le_trans _ _ x y z }, le_antisymm := by { rintro ⟨x⟩ ⟨y⟩ h₁ h₂, apply quot.sound, exact ⟨h₁, h₂⟩ }, lt := quotient.lift₂ (<) (λ x₁ y₁ x₂ y₂ hx hy, propext (lt_congr hx hy)), lt_iff_le_not_le := by { rintro ⟨x⟩ ⟨y⟩, exact @lt_iff_le_not_le _ _ x y }, } /-- The less or fuzzy relation on games. If `0 ⧏ x` (less or fuzzy with), then Left can win `x` as the first player. -/ def lf : game → game → Prop := quotient.lift₂ lf (λ x₁ y₁ x₂ y₂ hx hy, propext (lf_congr hx hy)) local infix ` ⧏ `:50 := lf /-- On `game`, simp-normal inequalities should use as few negations as possible. -/ @[simp] theorem not_le : ∀ {x y : game}, ¬ x ≤ y ↔ y ⧏ x := by { rintro ⟨x⟩ ⟨y⟩, exact pgame.not_le } /-- On `game`, simp-normal inequalities should use as few negations as possible. -/ @[simp] theorem not_lf : ∀ {x y : game}, ¬ x ⧏ y ↔ y ≤ x := by { rintro ⟨x⟩ ⟨y⟩, exact not_lf } instance : is_trichotomous game (⧏) := ⟨by { rintro ⟨x⟩ ⟨y⟩, change _ ∨ ⟦x⟧ = ⟦y⟧ ∨ _, rw quotient.eq, apply lf_or_equiv_or_gf }⟩ /-! It can be useful to use these lemmas to turn `pgame` inequalities into `game` inequalities, as the `add_comm_group` structure on `game` often simplifies many proofs. -/ theorem _root_.pgame.le_iff_game_le {x y : pgame} : x ≤ y ↔ ⟦x⟧ ≤ ⟦y⟧ := iff.rfl theorem _root_.pgame.lf_iff_game_lf {x y : pgame} : pgame.lf x y ↔ ⟦x⟧ ⧏ ⟦y⟧ := iff.rfl theorem _root_.pgame.lt_iff_game_lt {x y : pgame} : x < y ↔ ⟦x⟧ < ⟦y⟧ := iff.rfl theorem _root_.pgame.equiv_iff_game_eq {x y : pgame} : x ≈ y ↔ ⟦x⟧ = ⟦y⟧ := (@quotient.eq _ _ x y).symm /-- The fuzzy, confused, or incomparable relation on games. If `x ∥ 0`, then the first player can always win `x`. -/ def fuzzy : game → game → Prop := quotient.lift₂ fuzzy (λ x₁ y₁ x₂ y₂ hx hy, propext (fuzzy_congr hx hy)) local infix ` ∥ `:50 := fuzzy theorem _root_.pgame.fuzzy_iff_game_fuzzy {x y : pgame} : pgame.fuzzy x y ↔ ⟦x⟧ ∥ ⟦y⟧ := iff.rfl instance covariant_class_add_le : covariant_class game game (+) (≤) := ⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_le_add_left _ _ _ _ b c h a }⟩ instance covariant_class_swap_add_le : covariant_class game game (swap (+)) (≤) := ⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_le_add_right _ _ _ _ b c h a }⟩ instance covariant_class_add_lt : covariant_class game game (+) (<) := ⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_lt_add_left _ _ _ _ b c h a }⟩ instance covariant_class_swap_add_lt : covariant_class game game (swap (+)) (<) := ⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_lt_add_right _ _ _ _ b c h a }⟩ theorem add_lf_add_right : ∀ {b c : game} (h : b ⧏ c) (a), b + a ⧏ c + a := by { rintro ⟨b⟩ ⟨c⟩ h ⟨a⟩, apply add_lf_add_right h } theorem add_lf_add_left : ∀ {b c : game} (h : b ⧏ c) (a), a + b ⧏ a + c := by { rintro ⟨b⟩ ⟨c⟩ h ⟨a⟩, apply add_lf_add_left h } instance ordered_add_comm_group : ordered_add_comm_group game := { add_le_add_left := @add_le_add_left _ _ _ game.covariant_class_add_le, ..game.add_comm_group_with_one, ..game.partial_order } end game namespace pgame @[simp] lemma quot_neg (a : pgame) : ⟦-a⟧ = -⟦a⟧ := rfl @[simp] lemma quot_add (a b : pgame) : ⟦a + b⟧ = ⟦a⟧ + ⟦b⟧ := rfl @[simp] lemma quot_sub (a b : pgame) : ⟦a - b⟧ = ⟦a⟧ - ⟦b⟧ := rfl theorem quot_eq_of_mk_quot_eq {x y : pgame} (L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves) (hl : ∀ i, ⟦x.move_left i⟧ = ⟦y.move_left (L i)⟧) (hr : ∀ j, ⟦x.move_right j⟧ = ⟦y.move_right (R j)⟧) : ⟦x⟧ = ⟦y⟧ := by { simp_rw [quotient.eq] at hl hr, exact quot.sound (equiv_of_mk_equiv L R hl hr) } /-! Multiplicative operations can be defined at the level of pre-games, but to prove their properties we need to use the abelian group structure of games. Hence we define them here. -/ /-- The product of `x = {xL | xR}` and `y = {yL | yR}` is `{xL*y + x*yL - xL*yL, xR*y + x*yR - xR*yR | xL*y + x*yR - xL*yR, x*yL + xR*y - xR*yL }`. -/ instance : has_mul pgame.{u} := ⟨λ x y, begin induction x with xl xr xL xR IHxl IHxr generalizing y, induction y with yl yr yL yR IHyl IHyr, have y := mk yl yr yL yR, refine ⟨xl × yl ⊕ xr × yr, xl × yr ⊕ xr × yl, _, _⟩; rintro (⟨i, j⟩ | ⟨i, j⟩), { exact IHxl i y + IHyl j - IHxl i (yL j) }, { exact IHxr i y + IHyr j - IHxr i (yR j) }, { exact IHxl i y + IHyr j - IHxl i (yR j) }, { exact IHxr i y + IHyl j - IHxr i (yL j) } end⟩ theorem left_moves_mul : ∀ (x y : pgame.{u}), (x * y).left_moves = (x.left_moves × y.left_moves ⊕ x.right_moves × y.right_moves) | ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl theorem right_moves_mul : ∀ (x y : pgame.{u}), (x * y).right_moves = (x.left_moves × y.right_moves ⊕ x.right_moves × y.left_moves) | ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl /-- Turns two left or right moves for `x` and `y` into a left move for `x * y` and vice versa. Even though these types are the same (not definitionally so), this is the preferred way to convert between them. -/ def to_left_moves_mul {x y : pgame} : x.left_moves × y.left_moves ⊕ x.right_moves × y.right_moves ≃ (x * y).left_moves := equiv.cast (left_moves_mul x y).symm /-- Turns a left and a right move for `x` and `y` into a right move for `x * y` and vice versa. Even though these types are the same (not definitionally so), this is the preferred way to convert between them. -/ def to_right_moves_mul {x y : pgame} : x.left_moves × y.right_moves ⊕ x.right_moves × y.left_moves ≃ (x * y).right_moves := equiv.cast (right_moves_mul x y).symm @[simp] lemma mk_mul_move_left_inl {xl xr yl yr} {xL xR yL yR} {i j} : (mk xl xr xL xR * mk yl yr yL yR).move_left (sum.inl (i, j)) = xL i * (mk yl yr yL yR) + (mk xl xr xL xR) * yL j - xL i * yL j := rfl @[simp] lemma mul_move_left_inl {x y : pgame} {i j} : (x * y).move_left (to_left_moves_mul (sum.inl (i, j))) = x.move_left i * y + x * y.move_left j - x.move_left i * y.move_left j := by { cases x, cases y, refl } @[simp] lemma mk_mul_move_left_inr {xl xr yl yr} {xL xR yL yR} {i j} : (mk xl xr xL xR * mk yl yr yL yR).move_left (sum.inr (i, j)) = xR i * (mk yl yr yL yR) + (mk xl xr xL xR) * yR j - xR i * yR j := rfl @[simp] lemma mul_move_left_inr {x y : pgame} {i j} : (x * y).move_left (to_left_moves_mul (sum.inr (i, j))) = x.move_right i * y + x * y.move_right j - x.move_right i * y.move_right j := by { cases x, cases y, refl } @[simp] lemma mk_mul_move_right_inl {xl xr yl yr} {xL xR yL yR} {i j} : (mk xl xr xL xR * mk yl yr yL yR).move_right (sum.inl (i, j)) = xL i * (mk yl yr yL yR) + (mk xl xr xL xR) * yR j - xL i * yR j := rfl @[simp] lemma mul_move_right_inl {x y : pgame} {i j} : (x * y).move_right (to_right_moves_mul (sum.inl (i, j))) = x.move_left i * y + x * y.move_right j - x.move_left i * y.move_right j := by { cases x, cases y, refl } @[simp] lemma mk_mul_move_right_inr {xl xr yl yr} {xL xR yL yR} {i j} : (mk xl xr xL xR * mk yl yr yL yR).move_right (sum.inr (i, j)) = xR i * (mk yl yr yL yR) + (mk xl xr xL xR) * yL j - xR i * yL j := rfl @[simp] lemma mul_move_right_inr {x y : pgame} {i j} : (x * y).move_right (to_right_moves_mul (sum.inr (i, j))) = x.move_right i * y + x * y.move_left j - x.move_right i * y.move_left j := by { cases x, cases y, refl } lemma left_moves_mul_cases {x y : pgame} (k) {P : (x * y).left_moves → Prop} (hl : ∀ ix iy, P $ to_left_moves_mul (sum.inl ⟨ix, iy⟩)) (hr : ∀ jx jy, P $ to_left_moves_mul (sum.inr ⟨jx, jy⟩)) : P k := begin rw ←to_left_moves_mul.apply_symm_apply k, rcases to_left_moves_mul.symm k with ⟨ix, iy⟩ | ⟨jx, jy⟩, { apply hl }, { apply hr } end lemma right_moves_mul_cases {x y : pgame} (k) {P : (x * y).right_moves → Prop} (hl : ∀ ix jy, P $ to_right_moves_mul (sum.inl ⟨ix, jy⟩)) (hr : ∀ jx iy, P $ to_right_moves_mul (sum.inr ⟨jx, iy⟩)) : P k := begin rw ←to_right_moves_mul.apply_symm_apply k, rcases to_right_moves_mul.symm k with ⟨ix, iy⟩ | ⟨jx, jy⟩, { apply hl }, { apply hr } end theorem quot_mul_comm : Π (x y : pgame.{u}), ⟦x * y⟧ = ⟦y * x⟧ | (mk xl xr xL xR) (mk yl yr yL yR) := begin refine quot_eq_of_mk_quot_eq (equiv.sum_congr (equiv.prod_comm _ _) (equiv.prod_comm _ _)) ((equiv.sum_comm _ _).trans (equiv.sum_congr (equiv.prod_comm _ _) (equiv.prod_comm _ _))) _ _, all_goals { rintro (⟨i, j⟩ | ⟨i, j⟩); dsimp; rw [quot_mul_comm, quot_mul_comm (mk xl xr xL xR)] }, any_goals { rw [quot_mul_comm (xL i), add_comm] }, any_goals { rw [quot_mul_comm (xR i), add_comm] } end using_well_founded { dec_tac := pgame_wf_tac } /-- `x * y` is equivalent to `y * x`. -/ theorem mul_comm_equiv (x y : pgame) : x * y ≈ y * x := quotient.exact $ quot_mul_comm _ _ instance is_empty_mul_zero_left_moves (x : pgame.{u}) : is_empty (x * 0).left_moves := by { cases x, apply sum.is_empty } instance is_empty_mul_zero_right_moves (x : pgame.{u}) : is_empty (x * 0).right_moves := by { cases x, apply sum.is_empty } instance is_empty_zero_mul_left_moves (x : pgame.{u}) : is_empty (0 * x).left_moves := by { cases x, apply sum.is_empty } instance is_empty_zero_mul_right_moves (x : pgame.{u}) : is_empty (0 * x).right_moves := by { cases x, apply sum.is_empty } /-- `x * 0` has exactly the same moves as `0`. -/ def mul_zero_relabelling (x : pgame) : x * 0 ≡r 0 := relabelling.is_empty _ /-- `x * 0` is equivalent to `0`. -/ theorem mul_zero_equiv (x : pgame) : x * 0 ≈ 0 := (mul_zero_relabelling x).equiv @[simp] theorem quot_mul_zero (x : pgame) : ⟦x * 0⟧ = ⟦0⟧ := @quotient.sound _ _ (x * 0) _ x.mul_zero_equiv /-- `0 * x` has exactly the same moves as `0`. -/ def zero_mul_relabelling (x : pgame) : 0 * x ≡r 0 := relabelling.is_empty _ /-- `0 * x` is equivalent to `0`. -/ theorem zero_mul_equiv (x : pgame) : 0 * x ≈ 0 := (zero_mul_relabelling x).equiv @[simp] theorem quot_zero_mul (x : pgame) : ⟦0 * x⟧ = ⟦0⟧ := @quotient.sound _ _ (0 * x) _ x.zero_mul_equiv @[simp] theorem quot_neg_mul : Π (x y : pgame), ⟦-x * y⟧ = -⟦x * y⟧ | (mk xl xr xL xR) (mk yl yr yL yR) := begin let x := mk xl xr xL xR, let y := mk yl yr yL yR, refine quot_eq_of_mk_quot_eq _ _ _ _, { fsplit; rintro (⟨_, _⟩ | ⟨_, _⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 4 } }, { fsplit; rintro (⟨_, _⟩ | ⟨_, _⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 4 } }, { rintro (⟨i, j⟩ | ⟨i, j⟩), { change ⟦-xR i * y + (-x) * yL j - (-xR i) * yL j⟧ = ⟦-(xR i * y + x * yL j - xR i * yL j)⟧, simp only [quot_add, quot_sub, quot_neg_mul], simp, abel }, { change ⟦-xL i * y + (-x) * yR j - (-xL i) * yR j⟧ = ⟦-(xL i * y + x * yR j - xL i * yR j)⟧, simp only [quot_add, quot_sub, quot_neg_mul], simp, abel } }, { rintro (⟨i, j⟩ | ⟨i, j⟩), { change ⟦-xR i * y + (-x) * yR j - (-xR i) * yR j⟧ = ⟦-(xR i * y + x * yR j - xR i * yR j)⟧, simp only [quot_add, quot_sub, quot_neg_mul], simp, abel }, { change ⟦-xL i * y + (-x) * yL j - (-xL i) * yL j⟧ = ⟦-(xL i * y + x * yL j - xL i * yL j)⟧, simp only [quot_add, quot_sub, quot_neg_mul], simp, abel } }, end using_well_founded { dec_tac := pgame_wf_tac } @[simp] theorem quot_mul_neg (x y : pgame) : ⟦x * -y⟧ = -⟦x * y⟧ := by rw [quot_mul_comm, quot_neg_mul, quot_mul_comm] @[simp] theorem quot_left_distrib : Π (x y z : pgame), ⟦x * (y + z)⟧ = ⟦x * y⟧ + ⟦x * z⟧ | (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) := begin let x := mk xl xr xL xR, let y := mk yl yr yL yR, let z := mk zl zr zL zR, refine quot_eq_of_mk_quot_eq _ _ _ _, { fsplit, { rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } }, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } }, { rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩); refl }, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩); refl } }, { fsplit, { rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } }, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } }, { rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩); refl }, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩); refl } }, { rintro (⟨i, j | k⟩ | ⟨i, j | k⟩), { change ⟦xL i * (y + z) + x * (yL j + z) - xL i * (yL j + z)⟧ = ⟦xL i * y + x * yL j - xL i * yL j + x * z⟧, simp [quot_left_distrib], abel }, { change ⟦xL i * (y + z) + x * (y + zL k) - xL i * (y + zL k)⟧ = ⟦x * y + (xL i * z + x * zL k - xL i * zL k)⟧, simp [quot_left_distrib], abel }, { change ⟦xR i * (y + z) + x * (yR j + z) - xR i * (yR j + z)⟧ = ⟦xR i * y + x * yR j - xR i * yR j + x * z⟧, simp [quot_left_distrib], abel }, { change ⟦xR i * (y + z) + x * (y + zR k) - xR i * (y + zR k)⟧ = ⟦x * y + (xR i * z + x * zR k - xR i * zR k)⟧, simp [quot_left_distrib], abel } }, { rintro (⟨i, j | k⟩ | ⟨i, j | k⟩), { change ⟦xL i * (y + z) + x * (yR j + z) - xL i * (yR j + z)⟧ = ⟦xL i * y + x * yR j - xL i * yR j + x * z⟧, simp [quot_left_distrib], abel }, { change ⟦xL i * (y + z) + x * (y + zR k) - xL i * (y + zR k)⟧ = ⟦x * y + (xL i * z + x * zR k - xL i * zR k)⟧, simp [quot_left_distrib], abel }, { change ⟦xR i * (y + z) + x * (yL j + z) - xR i * (yL j + z)⟧ = ⟦xR i * y + x * yL j - xR i * yL j + x * z⟧, simp [quot_left_distrib], abel }, { change ⟦xR i * (y + z) + x * (y + zL k) - xR i * (y + zL k)⟧ = ⟦x * y + (xR i * z + x * zL k - xR i * zL k)⟧, simp [quot_left_distrib], abel } } end using_well_founded { dec_tac := pgame_wf_tac } /-- `x * (y + z)` is equivalent to `x * y + x * z.`-/ theorem left_distrib_equiv (x y z : pgame) : x * (y + z) ≈ x * y + x * z := quotient.exact $ quot_left_distrib _ _ _ @[simp] theorem quot_left_distrib_sub (x y z : pgame) : ⟦x * (y - z)⟧ = ⟦x * y⟧ - ⟦x * z⟧ := by { change ⟦x * (y + -z)⟧ = ⟦x * y⟧ + -⟦x * z⟧, rw [quot_left_distrib, quot_mul_neg] } @[simp] theorem quot_right_distrib (x y z : pgame) : ⟦(x + y) * z⟧ = ⟦x * z⟧ + ⟦y * z⟧ := by simp only [quot_mul_comm, quot_left_distrib] /-- `(x + y) * z` is equivalent to `x * z + y * z.`-/ theorem right_distrib_equiv (x y z : pgame) : (x + y) * z ≈ x * z + y * z := quotient.exact $ quot_right_distrib _ _ _ @[simp] theorem quot_right_distrib_sub (x y z : pgame) : ⟦(y - z) * x⟧ = ⟦y * x⟧ - ⟦z * x⟧ := by { change ⟦(y + -z) * x⟧ = ⟦y * x⟧ + -⟦z * x⟧, rw [quot_right_distrib, quot_neg_mul] } @[simp] theorem quot_mul_one : Π (x : pgame), ⟦x * 1⟧ = ⟦x⟧ | (mk xl xr xL xR) := begin let x := mk xl xr xL xR, refine quot_eq_of_mk_quot_eq _ _ _ _, any_goals { fsplit, { rintro (⟨_, ⟨ ⟩⟩ | ⟨_, ⟨ ⟩⟩), assumption }, { intro i, try { exact sum.inl (i, punit.star) }, try { exact sum.inr (i, punit.star) } }, { rintro (⟨_, ⟨ ⟩⟩ | ⟨_, ⟨ ⟩⟩), refl }, { exact λ i, rfl } }, all_goals { rintro (⟨i, ⟨ ⟩⟩ | ⟨i, ⟨ ⟩⟩) }, { change ⟦xL i * 1 + x * 0 - xL i * 0⟧ = ⟦xL i⟧, simp [quot_mul_one] }, { change ⟦xR i * 1 + x * 0 - xR i * 0⟧ = ⟦xR i⟧, simp [quot_mul_one] } end /-- `x * 1` is equivalent to `x`. -/ theorem mul_one_equiv (x : pgame) : x * 1 ≈ x := quotient.exact $ quot_mul_one _ @[simp] theorem quot_one_mul (x : pgame) : ⟦1 * x⟧ = ⟦x⟧ := by rw [quot_mul_comm, quot_mul_one x] /-- `1 * x` is equivalent to `x`. -/ theorem one_mul_equiv (x : pgame) : 1 * x ≈ x := quotient.exact $ quot_one_mul _ theorem quot_mul_assoc : Π (x y z : pgame), ⟦x * y * z⟧ = ⟦x * (y * z)⟧ | (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) := begin let x := mk xl xr xL xR, let y := mk yl yr yL yR, let z := mk zl zr zL zR, refine quot_eq_of_mk_quot_eq _ _ _ _, { fsplit, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩, _⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } }, { rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_,⟨_, _⟩ | ⟨_, _⟩⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } }, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_,_⟩ | ⟨_, _⟩,_⟩); refl }, { rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_,⟨_, _⟩ | ⟨_, _⟩⟩); refl } }, { fsplit, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩,_⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } }, { rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩); solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } }, { rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩,_⟩); refl }, { rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩); refl } }, { rintro (⟨⟨i, j⟩ | ⟨i, j⟩, k⟩ | ⟨⟨i, j⟩ | ⟨i, j⟩, k⟩), { change ⟦(xL i * y + x * yL j - xL i * yL j) * z + (x * y) * zL k - (xL i * y + x * yL j - xL i * yL j) * zL k⟧ = ⟦xL i * (y * z) + x * (yL j * z + y * zL k - yL j * zL k) - xL i * (yL j * z + y * zL k - yL j * zL k)⟧, simp [quot_mul_assoc], abel }, { change ⟦(xR i * y + x * yR j - xR i * yR j) * z + (x * y) * zL k - (xR i * y + x * yR j - xR i * yR j) * zL k⟧ = ⟦xR i * (y * z) + x * (yR j * z + y * zL k - yR j * zL k) - xR i * (yR j * z + y * zL k - yR j * zL k)⟧, simp [quot_mul_assoc], abel }, { change ⟦(xL i * y + x * yR j - xL i * yR j) * z + (x * y) * zR k - (xL i * y + x * yR j - xL i * yR j) * zR k⟧ = ⟦xL i * (y * z) + x * (yR j * z + y * zR k - yR j * zR k) - xL i * (yR j * z + y * zR k - yR j * zR k)⟧, simp [quot_mul_assoc], abel }, { change ⟦(xR i * y + x * yL j - xR i * yL j) * z + (x * y) * zR k - (xR i * y + x * yL j - xR i * yL j) * zR k⟧ = ⟦xR i * (y * z) + x * (yL j * z + y * zR k - yL j * zR k) - xR i * (yL j * z + y * zR k - yL j * zR k)⟧, simp [quot_mul_assoc], abel } }, { rintro (⟨⟨i, j⟩ | ⟨i, j⟩, k⟩ | ⟨⟨i, j⟩ | ⟨i, j⟩, k⟩), { change ⟦(xL i * y + x * yL j - xL i * yL j) * z + (x * y) * zR k - (xL i * y + x * yL j - xL i * yL j) * zR k⟧ = ⟦xL i * (y * z) + x * (yL j * z + y * zR k - yL j * zR k) - xL i * (yL j * z + y * zR k - yL j * zR k)⟧, simp [quot_mul_assoc], abel }, { change ⟦(xR i * y + x * yR j - xR i * yR j) * z + (x * y) * zR k - (xR i * y + x * yR j - xR i * yR j) * zR k⟧ = ⟦xR i * (y * z) + x * (yR j * z + y * zR k - yR j * zR k) - xR i * (yR j * z + y * zR k - yR j * zR k)⟧, simp [quot_mul_assoc], abel }, { change ⟦(xL i * y + x * yR j - xL i * yR j) * z + (x * y) * zL k - (xL i * y + x * yR j - xL i * yR j) * zL k⟧ = ⟦xL i * (y * z) + x * (yR j * z + y * zL k - yR j * zL k) - xL i * (yR j * z + y * zL k - yR j * zL k)⟧, simp [quot_mul_assoc], abel }, { change ⟦(xR i * y + x * yL j - xR i * yL j) * z + (x * y) * zL k - (xR i * y + x * yL j - xR i * yL j) * zL k⟧ = ⟦xR i * (y * z) + x * (yL j * z + y * zL k - yL j * zL k) - xR i * (yL j * z + y * zL k - yL j * zL k)⟧, simp [quot_mul_assoc], abel } } end using_well_founded { dec_tac := pgame_wf_tac } /-- `x * y * z` is equivalent to `x * (y * z).`-/ theorem mul_assoc_equiv (x y z : pgame) : x * y * z ≈ x * (y * z) := quotient.exact $ quot_mul_assoc _ _ _ /-- Because the two halves of the definition of `inv` produce more elements on each side, we have to define the two families inductively. This is the indexing set for the function, and `inv_val` is the function part. -/ inductive inv_ty (l r : Type u) : bool → Type u | zero : inv_ty ff | left₁ : r → inv_ty ff → inv_ty ff | left₂ : l → inv_ty tt → inv_ty ff | right₁ : l → inv_ty ff → inv_ty tt | right₂ : r → inv_ty tt → inv_ty tt instance (l r : Type u) [is_empty l] [is_empty r] : is_empty (inv_ty l r tt) := ⟨by rintro (_|_|_|a|a); exact is_empty_elim a⟩ instance (l r : Type u) : inhabited (inv_ty l r ff) := ⟨inv_ty.zero⟩ instance unique_inv_ty (l r : Type u) [is_empty l] [is_empty r] : unique (inv_ty l r ff) := { uniq := by { rintro (a|a|a), refl, all_goals { exact is_empty_elim a } }, ..inv_ty.inhabited l r } /-- Because the two halves of the definition of `inv` produce more elements of each side, we have to define the two families inductively. This is the function part, defined by recursion on `inv_ty`. -/ def inv_val {l r} (L : l → pgame) (R : r → pgame) (IHl : l → pgame) (IHr : r → pgame) : ∀ {b}, inv_ty l r b → pgame | _ inv_ty.zero := 0 | _ (inv_ty.left₁ i j) := (1 + (R i - mk l r L R) * inv_val j) * IHr i | _ (inv_ty.left₂ i j) := (1 + (L i - mk l r L R) * inv_val j) * IHl i | _ (inv_ty.right₁ i j) := (1 + (L i - mk l r L R) * inv_val j) * IHl i | _ (inv_ty.right₂ i j) := (1 + (R i - mk l r L R) * inv_val j) * IHr i @[simp] theorem inv_val_is_empty {l r : Type u} {b} (L R IHl IHr) (i : inv_ty l r b) [is_empty l] [is_empty r] : inv_val L R IHl IHr i = 0 := begin cases i with a _ a _ a _ a, { refl }, all_goals { exact is_empty_elim a } end /-- The inverse of a positive surreal number `x = {L | R}` is given by `x⁻¹ = {0, (1 + (R - x) * x⁻¹L) * R, (1 + (L - x) * x⁻¹R) * L | (1 + (L - x) * x⁻¹L) * L, (1 + (R - x) * x⁻¹R) * R}`. Because the two halves `x⁻¹L, x⁻¹R` of `x⁻¹` are used in their own definition, the sets and elements are inductively generated. -/ def inv' : pgame → pgame | ⟨l, r, L, R⟩ := let l' := {i // 0 < L i}, L' : l' → pgame := λ i, L i.1, IHl' : l' → pgame := λ i, inv' (L i.1), IHr := λ i, inv' (R i) in ⟨inv_ty l' r ff, inv_ty l' r tt, inv_val L' R IHl' IHr, inv_val L' R IHl' IHr⟩ theorem zero_lf_inv' : ∀ (x : pgame), 0 ⧏ inv' x | ⟨xl, xr, xL, xR⟩ := by { convert lf_mk _ _ inv_ty.zero, refl } /-- `inv' 0` has exactly the same moves as `1`. -/ def inv'_zero : inv' 0 ≡r 1 := begin change mk _ _ _ _ ≡r 1, refine ⟨_, _, λ i, _, is_empty.elim _⟩, { apply equiv.equiv_punit (inv_ty _ _ _), apply_instance }, { apply equiv.equiv_pempty (inv_ty _ _ _), apply_instance }, { simp }, { dsimp, apply_instance } end theorem inv'_zero_equiv : inv' 0 ≈ 1 := inv'_zero.equiv /-- `inv' 1` has exactly the same moves as `1`. -/ def inv'_one : inv' 1 ≡r (1 : pgame.{u}) := begin change relabelling (mk _ _ _ _) 1, haveI : is_empty {i : punit.{u+1} // (0 : pgame.{u}) < 0}, { rw lt_self_iff_false, apply_instance }, refine ⟨_, _, λ i, _, is_empty.elim _⟩; dsimp, { apply equiv.equiv_punit }, { apply equiv.equiv_of_is_empty }, { simp }, { apply_instance } end theorem inv'_one_equiv : inv' 1 ≈ 1 := inv'_one.equiv /-- The inverse of a pre-game in terms of the inverse on positive pre-games. -/ noncomputable instance : has_inv pgame := ⟨by { classical, exact λ x, if x ≈ 0 then 0 else if 0 < x then inv' x else -inv' (-x) }⟩ noncomputable instance : has_div pgame := ⟨λ x y, x * y⁻¹⟩ theorem inv_eq_of_equiv_zero {x : pgame} (h : x ≈ 0) : x⁻¹ = 0 := if_pos h @[simp] theorem inv_zero : (0 : pgame)⁻¹ = 0 := inv_eq_of_equiv_zero (equiv_refl _) theorem inv_eq_of_pos {x : pgame} (h : 0 < x) : x⁻¹ = inv' x := (if_neg h.lf.not_equiv').trans (if_pos h) theorem inv_eq_of_lf_zero {x : pgame} (h : x ⧏ 0) : x⁻¹ = -inv' (-x) := (if_neg h.not_equiv).trans (if_neg h.not_gt) /-- `1⁻¹` has exactly the same moves as `1`. -/ def inv_one : 1⁻¹ ≡r 1 := by { rw inv_eq_of_pos zero_lt_one, exact inv'_one } theorem inv_one_equiv : 1⁻¹ ≈ 1 := inv_one.equiv end pgame