/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Eric Wieser -/ import data.matrix.basis import ring_theory.tensor_product /-! We show `matrix n n A ≃ₐ[R] (A ⊗[R] matrix n n R)`. -/ universes u v w open_locale tensor_product open_locale big_operators open tensor_product open algebra.tensor_product open matrix variables {R : Type u} [comm_semiring R] variables {A : Type v} [semiring A] [algebra R A] variables {n : Type w} variables (R A n) namespace matrix_equiv_tensor /-- (Implementation detail). The function underlying `(A ⊗[R] matrix n n R) →ₐ[R] matrix n n A`, as an `R`-bilinear map. -/ def to_fun_bilinear : A →ₗ[R] matrix n n R →ₗ[R] matrix n n A := (algebra.lsmul R (matrix n n A)).to_linear_map.compl₂ (algebra.linear_map R A).map_matrix @[simp] lemma to_fun_bilinear_apply (a : A) (m : matrix n n R) : to_fun_bilinear R A n a m = a • m.map (algebra_map R A) := rfl /-- (Implementation detail). The function underlying `(A ⊗[R] matrix n n R) →ₐ[R] matrix n n A`, as an `R`-linear map. -/ def to_fun_linear : A ⊗[R] matrix n n R →ₗ[R] matrix n n A := tensor_product.lift (to_fun_bilinear R A n) variables [decidable_eq n] [fintype n] /-- The function `(A ⊗[R] matrix n n R) →ₐ[R] matrix n n A`, as an algebra homomorphism. -/ def to_fun_alg_hom : (A ⊗[R] matrix n n R) →ₐ[R] matrix n n A := alg_hom_of_linear_map_tensor_product (to_fun_linear R A n) begin intros, simp_rw [to_fun_linear, lift.tmul, to_fun_bilinear_apply, mul_eq_mul, matrix.map_mul], ext, dsimp, simp_rw [matrix.mul_apply, pi.smul_apply, matrix.map_apply, smul_eq_mul, finset.mul_sum, _root_.mul_assoc, algebra.left_comm], end begin intros, simp_rw [to_fun_linear, lift.tmul, to_fun_bilinear_apply, matrix.map_one (algebra_map R A) (map_zero _) (map_one _), algebra_map_smul, algebra.algebra_map_eq_smul_one], end @[simp] lemma to_fun_alg_hom_apply (a : A) (m : matrix n n R) : to_fun_alg_hom R A n (a ⊗ₜ m) = a • m.map (algebra_map R A) := by simp [to_fun_alg_hom, alg_hom_of_linear_map_tensor_product, to_fun_linear] /-- (Implementation detail.) The bare function `matrix n n A → A ⊗[R] matrix n n R`. (We don't need to show that it's an algebra map, thankfully --- just that it's an inverse.) -/ def inv_fun (M : matrix n n A) : A ⊗[R] matrix n n R := ∑ (p : n × n), M p.1 p.2 ⊗ₜ (std_basis_matrix p.1 p.2 1) @[simp] lemma inv_fun_zero : inv_fun R A n 0 = 0 := by simp [inv_fun] @[simp] lemma inv_fun_add (M N : matrix n n A) : inv_fun R A n (M + N) = inv_fun R A n M + inv_fun R A n N := by simp [inv_fun, add_tmul, finset.sum_add_distrib] @[simp] lemma inv_fun_smul (a : A) (M : matrix n n A) : inv_fun R A n (a • M) = (a ⊗ₜ 1) * inv_fun R A n M := by simp [inv_fun,finset.mul_sum] @[simp] lemma inv_fun_algebra_map (M : matrix n n R) : inv_fun R A n (M.map (algebra_map R A)) = 1 ⊗ₜ M := begin dsimp [inv_fun], simp only [algebra.algebra_map_eq_smul_one, smul_tmul, ←tmul_sum, mul_boole], congr, conv_rhs {rw matrix_eq_sum_std_basis M}, convert finset.sum_product, simp, end lemma right_inv (M : matrix n n A) : (to_fun_alg_hom R A n) (inv_fun R A n M) = M := begin simp only [inv_fun, alg_hom.map_sum, std_basis_matrix, apply_ite ⇑(algebra_map R A), smul_eq_mul, mul_boole, to_fun_alg_hom_apply, ring_hom.map_zero, ring_hom.map_one, matrix.map_apply, pi.smul_def], convert finset.sum_product, apply matrix_eq_sum_std_basis, end lemma left_inv (M : A ⊗[R] matrix n n R) : inv_fun R A n (to_fun_alg_hom R A n M) = M := begin induction M using tensor_product.induction_on with a m x y hx hy, { simp, }, { simp, }, { simp [alg_hom.map_sum, hx, hy], }, end /-- (Implementation detail) The equivalence, ignoring the algebra structure, `(A ⊗[R] matrix n n R) ≃ matrix n n A`. -/ def equiv : (A ⊗[R] matrix n n R) ≃ matrix n n A := { to_fun := to_fun_alg_hom R A n, inv_fun := inv_fun R A n, left_inv := left_inv R A n, right_inv := right_inv R A n, } end matrix_equiv_tensor variables [fintype n] [decidable_eq n] /-- The `R`-algebra isomorphism `matrix n n A ≃ₐ[R] (A ⊗[R] matrix n n R)`. -/ def matrix_equiv_tensor : matrix n n A ≃ₐ[R] (A ⊗[R] matrix n n R) := alg_equiv.symm { ..(matrix_equiv_tensor.to_fun_alg_hom R A n), ..(matrix_equiv_tensor.equiv R A n) } open matrix_equiv_tensor @[simp] lemma matrix_equiv_tensor_apply (M : matrix n n A) : matrix_equiv_tensor R A n M = ∑ (p : n × n), M p.1 p.2 ⊗ₜ (std_basis_matrix p.1 p.2 1) := rfl @[simp] lemma matrix_equiv_tensor_apply_std_basis (i j : n) (x : A): matrix_equiv_tensor R A n (std_basis_matrix i j x) = x ⊗ₜ (std_basis_matrix i j 1) := begin have t : ∀ (p : n × n), (i = p.1 ∧ j = p.2) ↔ (p = (i, j)) := by tidy, simp [ite_tmul, t, std_basis_matrix], end @[simp] lemma matrix_equiv_tensor_apply_symm (a : A) (M : matrix n n R) : (matrix_equiv_tensor R A n).symm (a ⊗ₜ M) = M.map (λ x, a * algebra_map R A x) := begin simp [matrix_equiv_tensor, to_fun_alg_hom, alg_hom_of_linear_map_tensor_product, to_fun_linear], refl, end