/- Copyright (c) 2021 Riccardo Brasca. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Riccardo Brasca -/ import ring_theory.trace import ring_theory.norm import number_theory.number_field /-! # Discriminant of a family of vectors Given an `A`-algebra `B` and `b`, an `ι`-indexed family of elements of `B`, we define the *discriminant* of `b` as the determinant of the matrix whose `(i j)`-th element is the trace of `b i * b j`. ## Main definition * `algebra.discr A b` : the discriminant of `b : ι → B`. ## Main results * `algebra.discr_zero_of_not_linear_independent` : if `b` is not linear independent, then `algebra.discr A b = 0`. * `algebra.discr_of_matrix_vec_mul` and `discr_of_matrix_mul_vec` : formulas relating `algebra.discr A ι b` with `algebra.discr A ((P.map (algebra_map A B)).vec_mul b)` and `algebra.discr A ((P.map (algebra_map A B)).mul_vec b)`. * `algebra.discr_not_zero_of_basis` : over a field, if `b` is a basis, then `algebra.discr K b ≠ 0`. * `algebra.discr_eq_det_embeddings_matrix_reindex_pow_two` : if `L/K` is a field extension and `b : ι → L`, then `discr K b` is the square of the determinant of the matrix whose `(i, j)` coefficient is `σⱼ (b i)`, where `σⱼ : L →ₐ[K] E` is the embedding in an algebraically closed field `E` corresponding to `j : ι` via a bijection `e : ι ≃ (L →ₐ[K] E)`. * `algebra.discr_of_power_basis_eq_prod` : the discriminant of a power basis. * `discr_is_integral` : if `K` and `L` are fields and `is_scalar_tower R K L`, is `b : ι → L` satisfies ` ∀ i, is_integral R (b i)`, then `is_integral R (discr K b)`. * `discr_mul_is_integral_mem_adjoin` : let `K` be the fraction field of an integrally closed domain `R` and let `L` be a finite separable extension of `K`. Let `B : power_basis K L` be such that `is_integral R B.gen`. Then for all, `z : L` we have `(discr K B.basis) • z ∈ adjoin R ({B.gen} : set L)`. ## Implementation details Our definition works for any `A`-algebra `B`, but note that if `B` is not free as an `A`-module, then `trace A B = 0` by definition, so `discr A b = 0` for any `b`. -/ universes u v w z open_locale matrix big_operators open matrix finite_dimensional fintype polynomial finset intermediate_field namespace algebra variables (A : Type u) {B : Type v} (C : Type z) {ι : Type w} variables [comm_ring A] [comm_ring B] [algebra A B] [comm_ring C] [algebra A C] section discr /-- Given an `A`-algebra `B` and `b`, an `ι`-indexed family of elements of `B`, we define `discr A ι b` as the determinant of `trace_matrix A ι b`. -/ noncomputable def discr (A : Type u) {B : Type v} [comm_ring A] [comm_ring B] [algebra A B] [fintype ι] (b : ι → B) := by { classical, exact (trace_matrix A b).det } lemma discr_def [decidable_eq ι] [fintype ι] (b : ι → B) : discr A b = (trace_matrix A b).det := by convert rfl variables {ι' : Type*} [fintype ι'] [fintype ι] section basic @[simp] lemma discr_reindex (b : basis ι A B) (f : ι ≃ ι') : discr A (b ∘ ⇑(f.symm)) = discr A b := begin classical, rw [← basis.coe_reindex, discr_def, trace_matrix_reindex, det_reindex_self, ← discr_def] end /-- If `b` is not linear independent, then `algebra.discr A b = 0`. -/ lemma discr_zero_of_not_linear_independent [is_domain A] {b : ι → B} (hli : ¬linear_independent A b) : discr A b = 0 := begin classical, obtain ⟨g, hg, i, hi⟩ := fintype.not_linear_independent_iff.1 hli, have : (trace_matrix A b).mul_vec g = 0, { ext i, have : ∀ j, (trace A B) (b i * b j) * g j = (trace A B) (((g j) • (b j)) * b i), { intro j, simp [mul_comm], }, simp only [mul_vec, dot_product, trace_matrix, pi.zero_apply, trace_form_apply, λ j, this j, ← linear_map.map_sum, ← sum_mul, hg, zero_mul, linear_map.map_zero] }, by_contra h, rw discr_def at h, simpa [matrix.eq_zero_of_mul_vec_eq_zero h this] using hi, end variable {A} /-- Relation between `algebra.discr A ι b` and `algebra.discr A ((P.map (algebra_map A B)).vec_mul b)`. -/ lemma discr_of_matrix_vec_mul [decidable_eq ι] (b : ι → B) (P : matrix ι ι A) : discr A ((P.map (algebra_map A B)).vec_mul b) = P.det ^ 2 * discr A b := by rw [discr_def, trace_matrix_of_matrix_vec_mul, det_mul, det_mul, det_transpose, mul_comm, ← mul_assoc, discr_def, pow_two] /-- Relation between `algebra.discr A ι b` and `algebra.discr A ((P.map (algebra_map A B)).mul_vec b)`. -/ lemma discr_of_matrix_mul_vec [decidable_eq ι] (b : ι → B) (P : matrix ι ι A) : discr A ((P.map (algebra_map A B)).mul_vec b) = P.det ^ 2 * discr A b := by rw [discr_def, trace_matrix_of_matrix_mul_vec, det_mul, det_mul, det_transpose, mul_comm, ← mul_assoc, discr_def, pow_two] end basic section field variables (K : Type u) {L : Type v} (E : Type z) [field K] [field L] [field E] variables [algebra K L] [algebra K E] variables [module.finite K L] [is_alg_closed E] /-- Over a field, if `b` is a basis, then `algebra.discr K b ≠ 0`. -/ lemma discr_not_zero_of_basis [is_separable K L] (b : basis ι K L) : discr K b ≠ 0 := begin casesI is_empty_or_nonempty ι, { simp [discr] }, { have := span_eq_top_of_linear_independent_of_card_eq_finrank b.linear_independent (finrank_eq_card_basis b).symm, rw [discr_def, trace_matrix_def], simp_rw [← basis.mk_apply b.linear_independent this.ge], rw [← trace_matrix_def, trace_matrix_of_basis, ← bilin_form.nondegenerate_iff_det_ne_zero], exact trace_form_nondegenerate _ _ }, end /-- Over a field, if `b` is a basis, then `algebra.discr K b` is a unit. -/ lemma discr_is_unit_of_basis [is_separable K L] (b : basis ι K L) : is_unit (discr K b) := is_unit.mk0 _ (discr_not_zero_of_basis _ _) variables (b : ι → L) (pb : power_basis K L) /-- If `L/K` is a field extension and `b : ι → L`, then `discr K b` is the square of the determinant of the matrix whose `(i, j)` coefficient is `σⱼ (b i)`, where `σⱼ : L →ₐ[K] E` is the embedding in an algebraically closed field `E` corresponding to `j : ι` via a bijection `e : ι ≃ (L →ₐ[K] E)`. -/ lemma discr_eq_det_embeddings_matrix_reindex_pow_two [decidable_eq ι] [is_separable K L] (e : ι ≃ (L →ₐ[K] E)) : algebra_map K E (discr K b) = (embeddings_matrix_reindex K E b e).det ^ 2 := by rw [discr_def, ring_hom.map_det, ring_hom.map_matrix_apply, trace_matrix_eq_embeddings_matrix_reindex_mul_trans, det_mul, det_transpose, pow_two] /-- The discriminant of a power basis. -/ lemma discr_power_basis_eq_prod (e : fin pb.dim ≃ (L →ₐ[K] E)) [is_separable K L] : algebra_map K E (discr K pb.basis) = ∏ i : fin pb.dim, ∏ j in Ioi i, (e j pb.gen- (e i pb.gen)) ^ 2 := begin rw [discr_eq_det_embeddings_matrix_reindex_pow_two K E pb.basis e, embeddings_matrix_reindex_eq_vandermonde, det_transpose, det_vandermonde, ← prod_pow], congr, ext i, rw [← prod_pow] end /-- A variation of `of_power_basis_eq_prod`. -/ lemma discr_power_basis_eq_prod' [is_separable K L] (e : fin pb.dim ≃ (L →ₐ[K] E)) : algebra_map K E (discr K pb.basis) = ∏ i : fin pb.dim, ∏ j in Ioi i, -((e j pb.gen - e i pb.gen) * (e i pb.gen - e j pb.gen)) := begin rw [discr_power_basis_eq_prod _ _ _ e], congr, ext i, congr, ext j, ring end local notation `n` := finrank K L /-- A variation of `of_power_basis_eq_prod`. -/ lemma discr_power_basis_eq_prod'' [is_separable K L] (e : fin pb.dim ≃ (L →ₐ[K] E)) : algebra_map K E (discr K pb.basis) = (-1) ^ (n * (n - 1) / 2) * ∏ i : fin pb.dim, ∏ j in Ioi i, (e j pb.gen - e i pb.gen) * (e i pb.gen - e j pb.gen) := begin rw [discr_power_basis_eq_prod' _ _ _ e], simp_rw [λ i j, neg_eq_neg_one_mul ((e j pb.gen- (e i pb.gen)) * (e i pb.gen- (e j pb.gen))), prod_mul_distrib], congr, simp only [prod_pow_eq_pow_sum, prod_const], congr, rw [← @nat.cast_inj ℚ, nat.cast_sum], have : ∀ (x : fin pb.dim), (↑x + 1) ≤ pb.dim := by simp [nat.succ_le_iff, fin.is_lt], simp_rw [fin.card_Ioi, nat.sub_sub, add_comm 1], simp only [nat.cast_sub, this, finset.card_fin, nsmul_eq_mul, sum_const, sum_sub_distrib, nat.cast_add, nat.cast_one, sum_add_distrib, mul_one], rw [← nat.cast_sum, ← @finset.sum_range ℕ _ pb.dim (λ i, i), sum_range_id ], have hn : n = pb.dim, { rw [← alg_hom.card K L E, ← fintype.card_fin pb.dim], exact card_congr (equiv.symm e) }, have h₂ : 2 ∣ (pb.dim * (pb.dim - 1)) := even_iff_two_dvd.1 (nat.even_mul_self_pred _), have hne : ((2 : ℕ) : ℚ) ≠ 0 := by simp, have hle : 1 ≤ pb.dim, { rw [← hn, nat.one_le_iff_ne_zero, ← zero_lt_iff, finite_dimensional.finrank_pos_iff], apply_instance }, rw [hn, nat.cast_div h₂ hne, nat.cast_mul, nat.cast_sub hle], field_simp, ring, end /-- Formula for the discriminant of a power basis using the norm of the field extension. -/ lemma discr_power_basis_eq_norm [is_separable K L] : discr K pb.basis = (-1) ^ (n * (n - 1) / 2) * (norm K (aeval pb.gen (minpoly K pb.gen).derivative)) := begin let E := algebraic_closure L, letI := λ (a b : E), classical.prop_decidable (eq a b), have e : fin pb.dim ≃ (L →ₐ[K] E), { refine equiv_of_card_eq _, rw [fintype.card_fin, alg_hom.card], exact (power_basis.finrank pb).symm }, have hnodup : (map (algebra_map K E) (minpoly K pb.gen)).roots.nodup := nodup_roots (separable.map (is_separable.separable K pb.gen)), have hroots : ∀ σ : L →ₐ[K] E, σ pb.gen ∈ (map (algebra_map K E) (minpoly K pb.gen)).roots, { intro σ, rw [mem_roots, is_root.def, eval_map, ← aeval_def, aeval_alg_hom_apply], repeat { simp [minpoly.ne_zero (is_separable.is_integral K pb.gen)] } }, apply (algebra_map K E).injective, rw [ring_hom.map_mul, ring_hom.map_pow, ring_hom.map_neg, ring_hom.map_one, discr_power_basis_eq_prod'' _ _ _ e], congr, rw [norm_eq_prod_embeddings, prod_prod_Ioi_mul_eq_prod_prod_off_diag], conv_rhs { congr, skip, funext, rw [← aeval_alg_hom_apply, aeval_root_derivative_of_splits (minpoly.monic (is_separable.is_integral K pb.gen)) (is_alg_closed.splits_codomain _) (hroots σ), ← finset.prod_mk _ (hnodup.erase _)] }, rw [prod_sigma', prod_sigma'], refine prod_bij (λ i hi, ⟨e i.2, e i.1 pb.gen⟩) (λ i hi, _) (λ i hi, by simp at hi) (λ i j hi hj hij, _) (λ σ hσ, _), { simp only [true_and, finset.mem_mk, mem_univ, mem_sigma], rw [multiset.mem_erase_of_ne (λ h, _)], { exact hroots _ }, { simp only [true_and, mem_univ, ne.def, mem_sigma, mem_compl, mem_singleton] at hi, rw [← power_basis.lift_equiv_apply_coe, ← power_basis.lift_equiv_apply_coe] at h, exact hi (e.injective $ pb.lift_equiv.injective $ subtype.eq h.symm) } }, { simp only [equiv.apply_eq_iff_eq, heq_iff_eq] at hij, have h := hij.2, rw [← power_basis.lift_equiv_apply_coe, ← power_basis.lift_equiv_apply_coe] at h, refine sigma.eq (equiv.injective e (equiv.injective _ (subtype.eq h))) (by simp [hij.1]) }, { simp only [true_and, finset.mem_mk, mem_univ, mem_sigma] at ⊢ hσ, simp only [sigma.exists, exists_prop, mem_compl, mem_singleton, ne.def], refine ⟨e.symm (power_basis.lift pb σ.2 _), e.symm σ.1, ⟨λ h, _, sigma.eq _ _⟩⟩, { rw [aeval_def, eval₂_eq_eval_map, ← is_root.def, ← mem_roots], { exact multiset.erase_subset _ _ hσ }, { simp [minpoly.ne_zero (is_separable.is_integral K pb.gen)] } }, { replace h := alg_hom.congr_fun (equiv.injective _ h) pb.gen, rw [power_basis.lift_gen] at h, rw [← h] at hσ, exact hnodup.not_mem_erase hσ }, all_goals { simp } } end section integral variables {R : Type z} [comm_ring R] [algebra R K] [algebra R L] [is_scalar_tower R K L] local notation `is_integral` := _root_.is_integral /-- If `K` and `L` are fields and `is_scalar_tower R K L`, and `b : ι → L` satisfies ` ∀ i, is_integral R (b i)`, then `is_integral R (discr K b)`. -/ lemma discr_is_integral {b : ι → L} (h : ∀ i, is_integral R (b i)) : is_integral R (discr K b) := begin classical, rw [discr_def], exact is_integral.det (λ i j, is_integral_trace (is_integral_mul (h i) (h j))) end /-- If `b` and `b'` are `ℚ`-bases of a number field `K` such that `∀ i j, is_integral ℤ (b.to_matrix b' i j)` and `∀ i j, is_integral ℤ (b'.to_matrix b i j)` then `discr ℚ b = discr ℚ b'`. -/ lemma discr_eq_discr_of_to_matrix_coeff_is_integral [number_field K] {b : basis ι ℚ K} {b' : basis ι' ℚ K} (h : ∀ i j, is_integral ℤ (b.to_matrix b' i j)) (h' : ∀ i j, is_integral ℤ (b'.to_matrix b i j)) : discr ℚ b = discr ℚ b' := begin replace h' : ∀ i j, is_integral ℤ (b'.to_matrix ((b.reindex (b.index_equiv b'))) i j), { intros i j, convert h' i ((b.index_equiv b').symm j), simpa }, classical, rw [← (b.reindex (b.index_equiv b')).to_matrix_map_vec_mul b', discr_of_matrix_vec_mul, ← one_mul (discr ℚ b), basis.coe_reindex, discr_reindex], congr, have hint : is_integral ℤ (((b.reindex (b.index_equiv b')).to_matrix b').det) := is_integral.det (λ i j, h _ _), obtain ⟨r, hr⟩ := is_integrally_closed.is_integral_iff.1 hint, have hunit : is_unit r, { have : is_integral ℤ ((b'.to_matrix (b.reindex (b.index_equiv b'))).det) := is_integral.det (λ i j, h' _ _), obtain ⟨r', hr'⟩ := is_integrally_closed.is_integral_iff.1 this, refine is_unit_iff_exists_inv.2 ⟨r', _⟩, suffices : algebra_map ℤ ℚ (r * r') = 1, { rw [← ring_hom.map_one (algebra_map ℤ ℚ)] at this, exact (is_fraction_ring.injective ℤ ℚ) this }, rw [ring_hom.map_mul, hr, hr', ← det_mul, basis.to_matrix_mul_to_matrix_flip, det_one] }, rw [← ring_hom.map_one (algebra_map ℤ ℚ), ← hr], cases int.is_unit_iff.1 hunit with hp hm, { simp [hp] }, { simp [hm] } end /-- Let `K` be the fraction field of an integrally closed domain `R` and let `L` be a finite separable extension of `K`. Let `B : power_basis K L` be such that `is_integral R B.gen`. Then for all, `z : L` that are integral over `R`, we have `(discr K B.basis) • z ∈ adjoin R ({B.gen} : set L)`. -/ lemma discr_mul_is_integral_mem_adjoin [is_domain R] [is_separable K L] [is_integrally_closed R] [is_fraction_ring R K] {B : power_basis K L} (hint : is_integral R B.gen) {z : L} (hz : is_integral R z) : (discr K B.basis) • z ∈ adjoin R ({B.gen} : set L) := begin have hinv : is_unit (trace_matrix K B.basis).det := by simpa [← discr_def] using discr_is_unit_of_basis _ B.basis, have H : (trace_matrix K B.basis).det • (trace_matrix K B.basis).mul_vec (B.basis.equiv_fun z) = (trace_matrix K B.basis).det • (λ i, trace K L (z * B.basis i)), { congr, exact trace_matrix_of_basis_mul_vec _ _ }, have cramer := mul_vec_cramer (trace_matrix K B.basis) (λ i, trace K L (z * B.basis i)), suffices : ∀ i, ((trace_matrix K B.basis).det • (B.basis.equiv_fun z)) i ∈ (⊥ : subalgebra R K), { rw [← B.basis.sum_repr z, finset.smul_sum], refine subalgebra.sum_mem _ (λ i hi, _), replace this := this i, rw [← discr_def, pi.smul_apply, mem_bot] at this, obtain ⟨r, hr⟩ := this, rw [basis.equiv_fun_apply] at hr, rw [← smul_assoc, ← hr, algebra_map_smul], refine subalgebra.smul_mem _ _ _, rw [B.basis_eq_pow i], refine subalgebra.pow_mem _ (subset_adjoin (set.mem_singleton _)) _}, intro i, rw [← H, ← mul_vec_smul] at cramer, replace cramer := congr_arg (mul_vec (trace_matrix K B.basis)⁻¹) cramer, rw [mul_vec_mul_vec, nonsing_inv_mul _ hinv, mul_vec_mul_vec, nonsing_inv_mul _ hinv, one_mul_vec, one_mul_vec] at cramer, rw [← congr_fun cramer i, cramer_apply, det_apply], refine subalgebra.sum_mem _ (λ σ _, subalgebra.zsmul_mem _ (subalgebra.prod_mem _ (λ j _, _)) _), by_cases hji : j = i, { simp only [update_column_apply, hji, eq_self_iff_true, power_basis.coe_basis], exact mem_bot.2 (is_integrally_closed.is_integral_iff.1 $ is_integral_trace $ is_integral_mul hz $ is_integral.pow hint _) }, { simp only [update_column_apply, hji, power_basis.coe_basis], exact mem_bot.2 (is_integrally_closed.is_integral_iff.1 $ is_integral_trace $ is_integral_mul (is_integral.pow hint _) (is_integral.pow hint _)) } end end integral end field end discr end algebra