/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Chris Hughes -/ import data.polynomial.field_division import linear_algebra.finite_dimensional import ring_theory.adjoin.basic import ring_theory.power_basis import ring_theory.principal_ideal_domain /-! # Adjoining roots of polynomials This file defines the commutative ring `adjoin_root f`, the ring R[X]/(f) obtained from a commutative ring `R` and a polynomial `f : R[X]`. If furthermore `R` is a field and `f` is irreducible, the field structure on `adjoin_root f` is constructed. ## Main definitions and results The main definitions are in the `adjoin_root` namespace. * `mk f : R[X] →+* adjoin_root f`, the natural ring homomorphism. * `of f : R →+* adjoin_root f`, the natural ring homomorphism. * `root f : adjoin_root f`, the image of X in R[X]/(f). * `lift (i : R →+* S) (x : S) (h : f.eval₂ i x = 0) : (adjoin_root f) →+* S`, the ring homomorphism from R[X]/(f) to S extending `i : R →+* S` and sending `X` to `x`. * `lift_hom (x : S) (hfx : aeval x f = 0) : adjoin_root f →ₐ[R] S`, the algebra homomorphism from R[X]/(f) to S extending `algebra_map R S` and sending `X` to `x` * `equiv : (adjoin_root f →ₐ[F] E) ≃ {x // x ∈ (f.map (algebra_map F E)).roots}` a bijection between algebra homomorphisms from `adjoin_root` and roots of `f` in `S` -/ noncomputable theory open_locale classical open_locale big_operators polynomial universes u v w variables {R : Type u} {S : Type v} {K : Type w} open polynomial ideal /-- Adjoin a root of a polynomial `f` to a commutative ring `R`. We define the new ring as the quotient of `polynomial R` by the principal ideal generated by `f`. -/ def adjoin_root [comm_ring R] (f : R[X]) : Type u := polynomial R ⧸ (span {f} : ideal R[X]) namespace adjoin_root section comm_ring variables [comm_ring R] (f : R[X]) instance : comm_ring (adjoin_root f) := ideal.quotient.comm_ring _ instance : inhabited (adjoin_root f) := ⟨0⟩ instance : decidable_eq (adjoin_root f) := classical.dec_eq _ protected lemma nontrivial [is_domain R] (h : degree f ≠ 0) : nontrivial (adjoin_root f) := ideal.quotient.nontrivial begin simp_rw [ne.def, span_singleton_eq_top, polynomial.is_unit_iff, not_exists, not_and], rintro x hx rfl, exact h (degree_C hx.ne_zero), end /-- Ring homomorphism from `R[x]` to `adjoin_root f` sending `X` to the `root`. -/ def mk : R[X] →+* adjoin_root f := ideal.quotient.mk _ @[elab_as_eliminator] theorem induction_on {C : adjoin_root f → Prop} (x : adjoin_root f) (ih : ∀ p : R[X], C (mk f p)) : C x := quotient.induction_on' x ih /-- Embedding of the original ring `R` into `adjoin_root f`. -/ def of : R →+* adjoin_root f := (mk f).comp C instance [comm_semiring S] [algebra S R] : algebra S (adjoin_root f) := ideal.quotient.algebra S instance [comm_semiring S] [comm_semiring K] [has_smul S K] [algebra S R] [algebra K R] [is_scalar_tower S K R] : is_scalar_tower S K (adjoin_root f) := submodule.quotient.is_scalar_tower _ _ instance [comm_semiring S] [comm_semiring K] [algebra S R] [algebra K R] [smul_comm_class S K R] : smul_comm_class S K (adjoin_root f) := submodule.quotient.smul_comm_class _ _ @[simp] lemma algebra_map_eq : algebra_map R (adjoin_root f) = of f := rfl variables (S) lemma algebra_map_eq' [comm_semiring S] [algebra S R] : algebra_map S (adjoin_root f) = (of f).comp (algebra_map S R) := rfl variables {S} /-- The adjoined root. -/ def root : adjoin_root f := mk f X variables {f} instance has_coe_t : has_coe_t R (adjoin_root f) := ⟨of f⟩ @[simp] lemma mk_eq_mk {g h : R[X]} : mk f g = mk f h ↔ f ∣ g - h := ideal.quotient.eq.trans ideal.mem_span_singleton @[simp] lemma mk_self : mk f f = 0 := quotient.sound' $ quotient_add_group.left_rel_apply.mpr (mem_span_singleton.2 $ by simp) @[simp] lemma mk_C (x : R) : mk f (C x) = x := rfl @[simp] lemma mk_X : mk f X = root f := rfl @[simp] lemma aeval_eq (p : R[X]) : aeval (root f) p = mk f p := polynomial.induction_on p (λ x, by { rw aeval_C, refl }) (λ p q ihp ihq, by rw [alg_hom.map_add, ring_hom.map_add, ihp, ihq]) (λ n x ih, by { rw [alg_hom.map_mul, aeval_C, alg_hom.map_pow, aeval_X, ring_hom.map_mul, mk_C, ring_hom.map_pow, mk_X], refl }) theorem adjoin_root_eq_top : algebra.adjoin R ({root f} : set (adjoin_root f)) = ⊤ := algebra.eq_top_iff.2 $ λ x, induction_on f x $ λ p, (algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩ @[simp] lemma eval₂_root (f : R[X]) : f.eval₂ (of f) (root f) = 0 := by rw [← algebra_map_eq, ← aeval_def, aeval_eq, mk_self] lemma is_root_root (f : R[X]) : is_root (f.map (of f)) (root f) := by rw [is_root, eval_map, eval₂_root] lemma is_algebraic_root (hf : f ≠ 0) : is_algebraic R (root f) := ⟨f, hf, eval₂_root f⟩ variables [comm_ring S] /-- Lift a ring homomorphism `i : R →+* S` to `adjoin_root f →+* S`. -/ def lift (i : R →+* S) (x : S) (h : f.eval₂ i x = 0) : (adjoin_root f) →+* S := begin apply ideal.quotient.lift _ (eval₂_ring_hom i x), intros g H, rcases mem_span_singleton.1 H with ⟨y, hy⟩, rw [hy, ring_hom.map_mul, coe_eval₂_ring_hom, h, zero_mul] end variables {i : R →+* S} {a : S} (h : f.eval₂ i a = 0) @[simp] lemma lift_mk (g : R[X]) : lift i a h (mk f g) = g.eval₂ i a := ideal.quotient.lift_mk _ _ _ @[simp] lemma lift_root : lift i a h (root f) = a := by rw [root, lift_mk, eval₂_X] @[simp] lemma lift_of {x : R} : lift i a h x = i x := by rw [← mk_C x, lift_mk, eval₂_C] @[simp] lemma lift_comp_of : (lift i a h).comp (of f) = i := ring_hom.ext $ λ _, @lift_of _ _ _ _ _ _ _ h _ variables (f) [algebra R S] /-- Produce an algebra homomorphism `adjoin_root f →ₐ[R] S` sending `root f` to a root of `f` in `S`. -/ def lift_hom (x : S) (hfx : aeval x f = 0) : adjoin_root f →ₐ[R] S := { commutes' := λ r, show lift _ _ hfx r = _, from lift_of hfx, .. lift (algebra_map R S) x hfx } @[simp] lemma coe_lift_hom (x : S) (hfx : aeval x f = 0) : (lift_hom f x hfx : adjoin_root f →+* S) = lift (algebra_map R S) x hfx := rfl @[simp] lemma aeval_alg_hom_eq_zero (ϕ : adjoin_root f →ₐ[R] S) : aeval (ϕ (root f)) f = 0 := begin have h : ϕ.to_ring_hom.comp (of f) = algebra_map R S := ring_hom.ext_iff.mpr (ϕ.commutes), rw [aeval_def, ←h, ←ring_hom.map_zero ϕ.to_ring_hom, ←eval₂_root f, hom_eval₂], refl, end @[simp] lemma lift_hom_eq_alg_hom (f : R[X]) (ϕ : adjoin_root f →ₐ[R] S) : lift_hom f (ϕ (root f)) (aeval_alg_hom_eq_zero f ϕ) = ϕ := begin suffices : ϕ.equalizer (lift_hom f (ϕ (root f)) (aeval_alg_hom_eq_zero f ϕ)) = ⊤, { exact (alg_hom.ext (λ x, (set_like.ext_iff.mp (this) x).mpr algebra.mem_top)).symm }, rw [eq_top_iff, ←adjoin_root_eq_top, algebra.adjoin_le_iff, set.singleton_subset_iff], exact (@lift_root _ _ _ _ _ _ _ (aeval_alg_hom_eq_zero f ϕ)).symm, end variables (hfx : aeval a f = 0) @[simp] lemma lift_hom_mk {g : R[X]} : lift_hom f a hfx (mk f g) = aeval a g := lift_mk hfx g @[simp] lemma lift_hom_root : lift_hom f a hfx (root f) = a := lift_root hfx @[simp] lemma lift_hom_of {x : R} : lift_hom f a hfx (of f x) = algebra_map _ _ x := lift_of hfx end comm_ring section irreducible variables [field K] {f : K[X]} instance span_maximal_of_irreducible [fact (irreducible f)] : (span {f}).is_maximal := principal_ideal_ring.is_maximal_of_irreducible $ fact.out _ noncomputable instance field [fact (irreducible f)] : field (adjoin_root f) := { ..adjoin_root.comm_ring f, ..ideal.quotient.field (span {f} : ideal K[X]) } lemma coe_injective (h : degree f ≠ 0) : function.injective (coe : K → adjoin_root f) := have _ := adjoin_root.nontrivial f h, by exactI (of f).injective lemma coe_injective' [fact (irreducible f)] : function.injective (coe : K → adjoin_root f) := (of f).injective variable (f) lemma mul_div_root_cancel [fact (irreducible f)] : ((X - C (root f)) * (f.map (of f) / (X - C (root f)))) = f.map (of f) := mul_div_eq_iff_is_root.2 $ is_root_root _ end irreducible section is_noetherian_ring instance [comm_ring R] [is_noetherian_ring R] {f : R[X]} : is_noetherian_ring (adjoin_root f) := ideal.quotient.is_noetherian_ring _ end is_noetherian_ring section power_basis variables [comm_ring R] {g : R[X]} lemma is_integral_root' (hg : g.monic) : is_integral R (root g) := ⟨g, hg, eval₂_root g⟩ /-- `adjoin_root.mod_by_monic_hom` sends the equivalence class of `f` mod `g` to `f %ₘ g`. This is a well-defined right inverse to `adjoin_root.mk`, see `adjoin_root.mk_left_inverse`. -/ def mod_by_monic_hom (hg : g.monic) : adjoin_root g →ₗ[R] R[X] := (submodule.liftq _ (polynomial.mod_by_monic_hom g) (λ f (hf : f ∈ (ideal.span {g}).restrict_scalars R), (mem_ker_mod_by_monic hg).mpr (ideal.mem_span_singleton.mp hf))).comp $ (submodule.quotient.restrict_scalars_equiv R (ideal.span {g} : ideal R[X])) .symm.to_linear_map @[simp] lemma mod_by_monic_hom_mk (hg : g.monic) (f : R[X]) : mod_by_monic_hom hg (mk g f) = f %ₘ g := rfl lemma mk_left_inverse (hg : g.monic) : function.left_inverse (mk g) (mod_by_monic_hom hg) := λ f, induction_on g f $ λ f, begin rw [mod_by_monic_hom_mk hg, mk_eq_mk, mod_by_monic_eq_sub_mul_div _ hg, sub_sub_cancel_left, dvd_neg], apply dvd_mul_right end lemma mk_surjective (hg : g.monic) : function.surjective (mk g) := (mk_left_inverse hg).surjective /-- The elements `1, root g, ..., root g ^ (d - 1)` form a basis for `adjoin_root g`, where `g` is a monic polynomial of degree `d`. -/ @[simps] def power_basis_aux' (hg : g.monic) : basis (fin g.nat_degree) R (adjoin_root g) := basis.of_equiv_fun { to_fun := λ f i, (mod_by_monic_hom hg f).coeff i, inv_fun := λ c, mk g $ ∑ (i : fin g.nat_degree), monomial i (c i), map_add' := λ f₁ f₂, funext $ λ i, by simp only [(mod_by_monic_hom hg).map_add, coeff_add, pi.add_apply], map_smul' := λ f₁ f₂, funext $ λ i, by simp only [(mod_by_monic_hom hg).map_smul, coeff_smul, pi.smul_apply, ring_hom.id_apply], left_inv := λ f, induction_on g f (λ f, eq.symm $ mk_eq_mk.mpr $ by { simp only [mod_by_monic_hom_mk, sum_mod_by_monic_coeff hg degree_le_nat_degree], rw [mod_by_monic_eq_sub_mul_div _ hg, sub_sub_cancel], exact dvd_mul_right _ _ }), right_inv := λ x, funext $ λ i, begin nontriviality R, simp only [mod_by_monic_hom_mk], rw [(mod_by_monic_eq_self_iff hg).mpr, finset_sum_coeff, finset.sum_eq_single i]; try { simp only [coeff_monomial, eq_self_iff_true, if_true] }, { intros j _ hj, exact if_neg (fin.coe_injective.ne hj) }, { intros, have := finset.mem_univ i, contradiction }, { refine (degree_sum_le _ _).trans_lt ((finset.sup_lt_iff _).mpr (λ j _, _)), { exact bot_lt_iff_ne_bot.mpr (mt degree_eq_bot.mp hg.ne_zero) }, { refine (degree_monomial_le _ _).trans_lt _, rw [degree_eq_nat_degree hg.ne_zero, with_bot.coe_lt_coe], exact j.2 } }, end} /-- The power basis `1, root g, ..., root g ^ (d - 1)` for `adjoin_root g`, where `g` is a monic polynomial of degree `d`. -/ @[simps] def power_basis' (hg : g.monic) : power_basis R (adjoin_root g) := { gen := root g, dim := g.nat_degree, basis := power_basis_aux' hg, basis_eq_pow := λ i, begin simp only [power_basis_aux', basis.coe_of_equiv_fun, linear_equiv.coe_symm_mk], rw finset.sum_eq_single i, { rw [function.update_same, monomial_one_right_eq_X_pow, (mk g).map_pow, mk_X] }, { intros j _ hj, rw ← monomial_zero_right _, convert congr_arg _ (function.update_noteq hj _ _) }, -- Fix `decidable_eq` mismatch { intros, have := finset.mem_univ i, contradiction }, end} variables [field K] {f : K[X]} lemma is_integral_root (hf : f ≠ 0) : is_integral K (root f) := is_algebraic_iff_is_integral.mp (is_algebraic_root hf) lemma minpoly_root (hf : f ≠ 0) : minpoly K (root f) = f * C (f.leading_coeff⁻¹) := begin have f'_monic : monic _ := monic_mul_leading_coeff_inv hf, refine (minpoly.unique K _ f'_monic _ _).symm, { rw [alg_hom.map_mul, aeval_eq, mk_self, zero_mul] }, intros q q_monic q_aeval, have commutes : (lift (algebra_map K (adjoin_root f)) (root f) q_aeval).comp (mk q) = mk f, { ext, { simp only [ring_hom.comp_apply, mk_C, lift_of], refl }, { simp only [ring_hom.comp_apply, mk_X, lift_root] } }, rw [degree_eq_nat_degree f'_monic.ne_zero, degree_eq_nat_degree q_monic.ne_zero, with_bot.coe_le_coe, nat_degree_mul hf, nat_degree_C, add_zero], apply nat_degree_le_of_dvd, { have : mk f q = 0, by rw [←commutes, ring_hom.comp_apply, mk_self, ring_hom.map_zero], rwa [←ideal.mem_span_singleton, ←ideal.quotient.eq_zero_iff_mem] }, { exact q_monic.ne_zero }, { rwa [ne.def, C_eq_zero, inv_eq_zero, leading_coeff_eq_zero] }, end /-- The elements `1, root f, ..., root f ^ (d - 1)` form a basis for `adjoin_root f`, where `f` is an irreducible polynomial over a field of degree `d`. -/ def power_basis_aux (hf : f ≠ 0) : basis (fin f.nat_degree) K (adjoin_root f) := begin set f' := f * C (f.leading_coeff⁻¹) with f'_def, have deg_f' : f'.nat_degree = f.nat_degree, { rw [nat_degree_mul hf, nat_degree_C, add_zero], { rwa [ne.def, C_eq_zero, inv_eq_zero, leading_coeff_eq_zero] } }, have minpoly_eq : minpoly K (root f) = f' := minpoly_root hf, apply @basis.mk _ _ _ (λ (i : fin f.nat_degree), (root f ^ i.val)), { rw [← deg_f', ← minpoly_eq], exact (is_integral_root hf).linear_independent_pow }, { rintros y -, rw [← deg_f', ← minpoly_eq], apply (is_integral_root hf).mem_span_pow, obtain ⟨g⟩ := y, use g, rw aeval_eq, refl } end /-- The power basis `1, root f, ..., root f ^ (d - 1)` for `adjoin_root f`, where `f` is an irreducible polynomial over a field of degree `d`. -/ @[simps] def power_basis (hf : f ≠ 0) : power_basis K (adjoin_root f) := { gen := root f, dim := f.nat_degree, basis := power_basis_aux hf, basis_eq_pow := basis.mk_apply _ _ } lemma minpoly_power_basis_gen (hf : f ≠ 0) : minpoly K (power_basis hf).gen = f * C (f.leading_coeff⁻¹) := by rw [power_basis_gen, minpoly_root hf] lemma minpoly_power_basis_gen_of_monic (hf : f.monic) (hf' : f ≠ 0 := hf.ne_zero) : minpoly K (power_basis hf').gen = f := by rw [minpoly_power_basis_gen hf', hf.leading_coeff, inv_one, C.map_one, mul_one] end power_basis section minpoly variables [comm_ring R] [comm_ring S] [algebra R S] (x : S) (R) open algebra polynomial /-- The surjective algebra morphism `R[X]/(minpoly R x) → R[x]`. If `R` is a GCD domain and `x` is integral, this is an isomorphism, see `adjoin_root.minpoly.equiv_adjoin`. -/ @[simps] def minpoly.to_adjoin : adjoin_root (minpoly R x) →ₐ[R] adjoin R ({x} : set S) := lift_hom _ ⟨x, self_mem_adjoin_singleton R x⟩ (by simp [← subalgebra.coe_eq_zero, aeval_subalgebra_coe]) variables {R x} lemma minpoly.to_adjoin_apply' (a : adjoin_root (minpoly R x)) : minpoly.to_adjoin R x a = lift_hom (minpoly R x) (⟨x, self_mem_adjoin_singleton R x⟩ : adjoin R ({x} : set S)) (by simp [← subalgebra.coe_eq_zero, aeval_subalgebra_coe]) a := rfl lemma minpoly.to_adjoin.apply_X : minpoly.to_adjoin R x (mk (minpoly R x) X) = ⟨x, self_mem_adjoin_singleton R x⟩ := by simp variables (R x) lemma minpoly.to_adjoin.surjective : function.surjective (minpoly.to_adjoin R x) := begin rw [← range_top_iff_surjective, _root_.eq_top_iff, ← adjoin_adjoin_coe_preimage], refine adjoin_le _, simp only [alg_hom.coe_range, set.mem_range], rintro ⟨y₁, y₂⟩ h, refine ⟨mk (minpoly R x) X, by simpa using h.symm⟩ end variables {R} {x} [is_domain R] [normalized_gcd_monoid R] [is_domain S] [no_zero_smul_divisors R S] lemma minpoly.to_adjoin.injective (hx : is_integral R x) : function.injective (minpoly.to_adjoin R x) := begin refine (injective_iff_map_eq_zero _).2 (λ P₁ hP₁, _), obtain ⟨P, hP⟩ := mk_surjective (minpoly.monic hx) P₁, by_cases hPzero : P = 0, { simpa [hPzero] using hP.symm }, have hPcont : P.content ≠ 0 := λ h, hPzero (content_eq_zero_iff.1 h), rw [← hP, minpoly.to_adjoin_apply', lift_hom_mk, ← subalgebra.coe_eq_zero, aeval_subalgebra_coe, set_like.coe_mk, P.eq_C_content_mul_prim_part, aeval_mul, aeval_C] at hP₁, replace hP₁ := eq_zero_of_ne_zero_of_mul_left_eq_zero ((map_ne_zero_iff _ (no_zero_smul_divisors.algebra_map_injective R S)).2 hPcont) hP₁, obtain ⟨Q, hQ⟩ := minpoly.gcd_domain_dvd hx P.is_primitive_prim_part.ne_zero hP₁, rw [P.eq_C_content_mul_prim_part] at hP, simpa [hQ] using hP.symm end /-- The algebra isomorphism `adjoin_root (minpoly R x) ≃ₐ[R] adjoin R x` -/ @[simps] def minpoly.equiv_adjoin (hx : is_integral R x) : adjoin_root (minpoly R x) ≃ₐ[R] adjoin R ({x} : set S) := alg_equiv.of_bijective (minpoly.to_adjoin R x) ⟨minpoly.to_adjoin.injective hx, minpoly.to_adjoin.surjective R x⟩ /-- The `power_basis` of `adjoin R {x}` given by `x`. See `algebra.adjoin.power_basis` for a version over a field. -/ @[simps] def _root_.algebra.adjoin.power_basis' (hx : _root_.is_integral R x) : _root_.power_basis R (algebra.adjoin R ({x} : set S)) := power_basis.map (adjoin_root.power_basis' (minpoly.monic hx)) (minpoly.equiv_adjoin hx) /-- The power basis given by `x` if `B.gen ∈ adjoin R {x}`. -/ @[simps] noncomputable def _root_.power_basis.of_gen_mem_adjoin' (B : _root_.power_basis R S) (hint : is_integral R x) (hx : B.gen ∈ adjoin R ({x} : set S)) : _root_.power_basis R S := (algebra.adjoin.power_basis' hint).map $ (subalgebra.equiv_of_eq _ _ $ power_basis.adjoin_eq_top_of_gen_mem_adjoin hx).trans subalgebra.top_equiv end minpoly section equiv section is_domain variables [comm_ring R] [is_domain R] [comm_ring S] [is_domain S] [algebra R S] variables (g : R[X]) (pb : _root_.power_basis R S) /-- If `S` is an extension of `R` with power basis `pb` and `g` is a monic polynomial over `R` such that `pb.gen` has a minimal polynomial `g`, then `S` is isomorphic to `adjoin_root g`. Compare `power_basis.equiv_of_root`, which would require `h₂ : aeval pb.gen (minpoly R (root g)) = 0`; that minimal polynomial is not guaranteed to be identical to `g`. -/ @[simps {fully_applied := ff}] def equiv' (h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) : adjoin_root g ≃ₐ[R] S := { to_fun := adjoin_root.lift_hom g pb.gen h₂, inv_fun := pb.lift (root g) h₁, left_inv := λ x, induction_on g x $ λ f, by rw [lift_hom_mk, pb.lift_aeval, aeval_eq], right_inv := λ x, begin obtain ⟨f, hf, rfl⟩ := pb.exists_eq_aeval x, rw [pb.lift_aeval, aeval_eq, lift_hom_mk] end, .. adjoin_root.lift_hom g pb.gen h₂ } @[simp] lemma equiv'_to_alg_hom (h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) : (equiv' g pb h₁ h₂).to_alg_hom = adjoin_root.lift_hom g pb.gen h₂ := rfl @[simp] lemma equiv'_symm_to_alg_hom (h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) : (equiv' g pb h₁ h₂).symm.to_alg_hom = pb.lift (root g) h₁ := rfl end is_domain section field variables (K) (L F : Type*) [field F] [field K] [field L] [algebra F K] [algebra F L] variables (pb : _root_.power_basis F K) /-- If `L` is a field extension of `F` and `f` is a polynomial over `F` then the set of maps from `F[x]/(f)` into `L` is in bijection with the set of roots of `f` in `L`. -/ def equiv (f : F[X]) (hf : f ≠ 0) : (adjoin_root f →ₐ[F] L) ≃ {x // x ∈ (f.map (algebra_map F L)).roots} := (power_basis hf).lift_equiv'.trans ((equiv.refl _).subtype_equiv (λ x, begin rw [power_basis_gen, minpoly_root hf, polynomial.map_mul, roots_mul, polynomial.map_C, roots_C, add_zero, equiv.refl_apply], { rw ← polynomial.map_mul, exact map_monic_ne_zero (monic_mul_leading_coeff_inv hf) } end)) end field end equiv section open ideal double_quot polynomial variables [comm_ring R] (I : ideal R) (f : polynomial R) /-- The natural isomorphism `R[α]/(I[α]) ≅ R[α]/((I[x] ⊔ (f)) / (f))` for `α` a root of `f : polynomial R` and `I : ideal R`. See `adjoin_root.quot_map_of_equiv` for the isomorphism with `(R/I)[X] / (f mod I)`. -/ def quot_map_of_equiv_quot_map_C_map_span_mk : adjoin_root f ⧸ I.map (of f) ≃+* adjoin_root f ⧸ (I.map (C : R →+* R[X])).map (span {f})^.quotient.mk := ideal.quot_equiv_of_eq (by rw [of, adjoin_root.mk, ideal.map_map]) @[simp] lemma quot_map_of_equiv_quot_map_C_map_span_mk_mk (x : adjoin_root f) : quot_map_of_equiv_quot_map_C_map_span_mk I f (ideal.quotient.mk (I.map (of f)) x) = ideal.quotient.mk _ x := rfl --this lemma should have the simp tag but this causes a lint issue lemma quot_map_of_equiv_quot_map_C_map_span_mk_symm_mk (x : adjoin_root f) : (quot_map_of_equiv_quot_map_C_map_span_mk I f).symm (ideal.quotient.mk ((I.map (C : R →+* R[X])).map (span {f})^.quotient.mk) x) = ideal.quotient.mk (I.map (of f)) x := by rw [quot_map_of_equiv_quot_map_C_map_span_mk, ideal.quot_equiv_of_eq_symm, ideal.quot_equiv_of_eq_mk ] /-- The natural isomorphism `R[α]/((I[x] ⊔ (f)) / (f)) ≅ (R[x]/I[x])/((f) ⊔ I[x] / I[x])` for `α` a root of `f : polynomial R` and `I : ideal R`-/ def quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk : (adjoin_root f) ⧸ (I.map (C : R →+* R[X])).map (span ({f} : set R[X]))^.quotient.mk ≃+* (R[X] ⧸ I.map (C : R →+* R[X])) ⧸ (span ({f} : set R[X])).map (I.map (C : R →+* R[X]))^.quotient.mk := quot_quot_equiv_comm (ideal.span ({f} : set (polynomial R))) (I.map (C : R →+* polynomial R)) @[simp] lemma quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_mk (p : R[X]) : quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk I f (ideal.quotient.mk _ (mk f p)) = quot_quot_mk (I.map C) (span {f}) p := rfl @[simp] lemma quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_symm_quot_quot_mk (p : R[X]) : (quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk I f).symm (quot_quot_mk (I.map C) (span {f}) p) = (ideal.quotient.mk _ (mk f p)) := rfl /-- The natural isomorphism `(R/I)[x]/(f mod I) ≅ (R[x]/I*R[x])/(f mod I[x])` where `f : polynomial R` and `I : ideal R`-/ def polynomial.quot_quot_equiv_comm : (R ⧸ I)[X] ⧸ span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I))) ≃+* (R[X] ⧸ map C I) ⧸ span ({(ideal.quotient.mk (I.map C)) f} : set (R[X] ⧸ map C I)) := quotient_equiv (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I)))) (span {ideal.quotient.mk (I.map polynomial.C) f}) (polynomial_quotient_equiv_quotient_polynomial I) (by rw [map_span, set.image_singleton, ring_equiv.coe_to_ring_hom, polynomial_quotient_equiv_quotient_polynomial_map_mk I f]) @[simp] lemma polynomial.quot_quot_equiv_comm_mk (p : R[X]) : (polynomial.quot_quot_equiv_comm I f) (ideal.quotient.mk _ (p.map I^.quotient.mk)) = (ideal.quotient.mk _ (ideal.quotient.mk _ p)) := by simp only [polynomial.quot_quot_equiv_comm, quotient_equiv_mk, polynomial_quotient_equiv_quotient_polynomial_map_mk ] @[simp] lemma polynomial.quot_quot_equiv_comm_symm_mk_mk (p : R[X]) : (polynomial.quot_quot_equiv_comm I f).symm (ideal.quotient.mk _ (ideal.quotient.mk _ p)) = (ideal.quotient.mk _ (p.map I^.quotient.mk)) := by simp only [polynomial.quot_quot_equiv_comm, quotient_equiv_symm_mk, polynomial_quotient_equiv_quotient_polynomial_symm_mk] /-- The natural isomorphism `R[α]/I[α] ≅ (R/I)[X]/(f mod I)` for `α` a root of `f : polynomial R` and `I : ideal R`-/ def quot_adjoin_root_equiv_quot_polynomial_quot : (adjoin_root f) ⧸ (I.map (of f)) ≃+* polynomial (R ⧸ I) ⧸ (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I)))) := (quot_map_of_equiv_quot_map_C_map_span_mk I f).trans ((quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk I f).trans ((ideal.quot_equiv_of_eq (show (span ({f} : set (polynomial R))).map (I.map (C : R →+* polynomial R))^.quotient.mk = span ({(ideal.quotient.mk (I.map polynomial.C)) f} : set (polynomial R ⧸ map C I)), from by rw [map_span, set.image_singleton])).trans (polynomial.quot_quot_equiv_comm I f).symm)) @[simp] lemma quot_adjoin_root_equiv_quot_polynomial_quot_mk_of (p : R[X]) : quot_adjoin_root_equiv_quot_polynomial_quot I f (ideal.quotient.mk (I.map (of f)) (mk f p)) = ideal.quotient.mk (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I)))) (p.map I^.quotient.mk) := by rw [quot_adjoin_root_equiv_quot_polynomial_quot, ring_equiv.trans_apply, ring_equiv.trans_apply, ring_equiv.trans_apply, quot_map_of_equiv_quot_map_C_map_span_mk_mk, quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_mk, quot_quot_mk, ring_hom.comp_apply, quot_equiv_of_eq_mk, polynomial.quot_quot_equiv_comm_symm_mk_mk] @[simp] lemma quot_adjoin_root_equiv_quot_polynomial_quot_symm_mk_mk (p : R[X]) : (quot_adjoin_root_equiv_quot_polynomial_quot I f).symm (ideal.quotient.mk (span ({f.map (I^.quotient.mk)} : set (polynomial (R ⧸ I)))) (p.map I^.quotient.mk)) = (ideal.quotient.mk (I.map (of f)) (mk f p)) := by rw [quot_adjoin_root_equiv_quot_polynomial_quot, ring_equiv.symm_trans_apply, ring_equiv.symm_trans_apply, ring_equiv.symm_trans_apply, ring_equiv.symm_symm, polynomial.quot_quot_equiv_comm_mk, ideal.quot_equiv_of_eq_symm, ideal.quot_equiv_of_eq_mk, ← ring_hom.comp_apply, ← double_quot.quot_quot_mk, quot_map_C_map_span_mk_equiv_quot_map_C_quot_map_span_mk_symm_quot_quot_mk, quot_map_of_equiv_quot_map_C_map_span_mk_symm_mk] end end adjoin_root