/- Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn -/ import data.list.prod_sigma import data.set.prod import logic.equiv.fin import model_theory.language_map /-! # Basics on First-Order Syntax This file defines first-order terms, formulas, sentences, and theories in a style inspired by the [Flypitch project](https://flypitch.github.io/). ## Main Definitions * A `first_order.language.term` is defined so that `L.term α` is the type of `L`-terms with free variables indexed by `α`. * A `first_order.language.formula` is defined so that `L.formula α` is the type of `L`-formulas with free variables indexed by `α`. * A `first_order.language.sentence` is a formula with no free variables. * A `first_order.language.Theory` is a set of sentences. * The variables of terms and formulas can be relabelled with `first_order.language.term.relabel`, `first_order.language.bounded_formula.relabel`, and `first_order.language.formula.relabel`. * Given an operation on terms and an operation on relations, `first_order.language.bounded_formula.map_term_rel` gives an operation on formulas. * `first_order.language.bounded_formula.cast_le` adds more `fin`-indexed variables. * `first_order.language.bounded_formula.lift_at` raises the indexes of the `fin`-indexed variables above a particular index. * `first_order.language.term.subst` and `first_order.language.bounded_formula.subst` substitute variables with given terms. * Language maps can act on syntactic objects with functions such as `first_order.language.Lhom.on_formula`. * `first_order.language.term.constants_vars_equiv` and `first_order.language.bounded_formula.constants_vars_equiv` switch terms and formulas between having constants in the language and having extra variables indexed by the same type. ## Implementation Notes * Formulas use a modified version of de Bruijn variables. Specifically, a `L.bounded_formula α n` is a formula with some variables indexed by a type `α`, which cannot be quantified over, and some indexed by `fin n`, which can. For any `φ : L.bounded_formula α (n + 1)`, we define the formula `∀' φ : L.bounded_formula α n` by universally quantifying over the variable indexed by `n : fin (n + 1)`. ## References For the Flypitch project: - [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*] [flypitch_cpp] - [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of the continuum hypothesis*][flypitch_itp] -/ universes u v w u' v' namespace first_order namespace language variables (L : language.{u v}) {L' : language} variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P] variables {α : Type u'} {β : Type v'} {γ : Type*} open_locale first_order open Structure fin /-- A term on `α` is either a variable indexed by an element of `α` or a function symbol applied to simpler terms. -/ inductive term (α : Type u') : Type (max u u') | var {} : ∀ (a : α), term | func {} : ∀ {l : ℕ} (f : L.functions l) (ts : fin l → term), term export term variable {L} namespace term open finset /-- The `finset` of variables used in a given term. -/ @[simp] def var_finset [decidable_eq α] : L.term α → finset α | (var i) := {i} | (func f ts) := univ.bUnion (λ i, (ts i).var_finset) /-- The `finset` of variables from the left side of a sum used in a given term. -/ @[simp] def var_finset_left [decidable_eq α] : L.term (α ⊕ β) → finset α | (var (sum.inl i)) := {i} | (var (sum.inr i)) := ∅ | (func f ts) := univ.bUnion (λ i, (ts i).var_finset_left) /-- Relabels a term's variables along a particular function. -/ @[simp] def relabel (g : α → β) : L.term α → L.term β | (var i) := var (g i) | (func f ts) := func f (λ i, (ts i).relabel) lemma relabel_id (t : L.term α) : t.relabel id = t := begin induction t with _ _ _ _ ih, { refl, }, { simp [ih] }, end @[simp] lemma relabel_id_eq_id : (term.relabel id : L.term α → L.term α) = id := funext relabel_id @[simp] lemma relabel_relabel (f : α → β) (g : β → γ) (t : L.term α) : (t.relabel f).relabel g = t.relabel (g ∘ f) := begin induction t with _ _ _ _ ih, { refl, }, { simp [ih] }, end @[simp] lemma relabel_comp_relabel (f : α → β) (g : β → γ) : (term.relabel g ∘ term.relabel f : L.term α → L.term γ) = term.relabel (g ∘ f) := funext (relabel_relabel f g) /-- Relabels a term's variables along a bijection. -/ @[simps] def relabel_equiv (g : α ≃ β) : L.term α ≃ L.term β := ⟨relabel g, relabel g.symm, λ t, by simp, λ t, by simp⟩ /-- Restricts a term to use only a set of the given variables. -/ def restrict_var [decidable_eq α] : Π (t : L.term α) (f : t.var_finset → β), L.term β | (var a) f := var (f ⟨a, mem_singleton_self a⟩) | (func F ts) f := func F (λ i, (ts i).restrict_var (f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i)))) /-- Restricts a term to use only a set of the given variables on the left side of a sum. -/ def restrict_var_left [decidable_eq α] {γ : Type*} : Π (t : L.term (α ⊕ γ)) (f : t.var_finset_left → β), L.term (β ⊕ γ) | (var (sum.inl a)) f := var (sum.inl (f ⟨a, mem_singleton_self a⟩)) | (var (sum.inr a)) f := var (sum.inr a) | (func F ts) f := func F (λ i, (ts i).restrict_var_left (f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i)))) end term /-- The representation of a constant symbol as a term. -/ def constants.term (c : L.constants) : (L.term α) := func c default /-- Applies a unary function to a term. -/ def functions.apply₁ (f : L.functions 1) (t : L.term α) : L.term α := func f ![t] /-- Applies a binary function to two terms. -/ def functions.apply₂ (f : L.functions 2) (t₁ t₂ : L.term α) : L.term α := func f ![t₁, t₂] namespace term /-- Sends a term with constants to a term with extra variables. -/ @[simp] def constants_to_vars : L[[γ]].term α → L.term (γ ⊕ α) | (var a) := var (sum.inr a) | (@func _ _ 0 f ts) := sum.cases_on f (λ f, func f (λ i, (ts i).constants_to_vars)) (λ c, var (sum.inl c)) | (@func _ _ (n + 1) f ts) := sum.cases_on f (λ f, func f (λ i, (ts i).constants_to_vars)) (λ c, is_empty_elim c) /-- Sends a term with extra variables to a term with constants. -/ @[simp] def vars_to_constants : L.term (γ ⊕ α) → L[[γ]].term α | (var (sum.inr a)) := var a | (var (sum.inl c)) := constants.term (sum.inr c) | (func f ts) := func (sum.inl f) (λ i, (ts i).vars_to_constants) /-- A bijection between terms with constants and terms with extra variables. -/ @[simps] def constants_vars_equiv : L[[γ]].term α ≃ L.term (γ ⊕ α) := ⟨constants_to_vars, vars_to_constants, begin intro t, induction t with _ n f _ ih, { refl }, { cases n, { cases f, { simp [constants_to_vars, vars_to_constants, ih] }, { simp [constants_to_vars, vars_to_constants, constants.term] } }, { cases f, { simp [constants_to_vars, vars_to_constants, ih] }, { exact is_empty_elim f } } } end, begin intro t, induction t with x n f _ ih, { cases x; refl }, { cases n; { simp [vars_to_constants, constants_to_vars, ih] } } end⟩ /-- A bijection between terms with constants and terms with extra variables. -/ def constants_vars_equiv_left : L[[γ]].term (α ⊕ β) ≃ L.term ((γ ⊕ α) ⊕ β) := constants_vars_equiv.trans (relabel_equiv (equiv.sum_assoc _ _ _)).symm @[simp] lemma constants_vars_equiv_left_apply (t : L[[γ]].term (α ⊕ β)) : constants_vars_equiv_left t = (constants_to_vars t).relabel (equiv.sum_assoc _ _ _).symm := rfl @[simp] lemma constants_vars_equiv_left_symm_apply (t : L.term ((γ ⊕ α) ⊕ β)) : constants_vars_equiv_left.symm t = vars_to_constants (t.relabel (equiv.sum_assoc _ _ _)) := rfl instance inhabited_of_var [inhabited α] : inhabited (L.term α) := ⟨var default⟩ instance inhabited_of_constant [inhabited L.constants] : inhabited (L.term α) := ⟨(default : L.constants).term⟩ /-- Raises all of the `fin`-indexed variables of a term greater than or equal to `m` by `n'`. -/ def lift_at {n : ℕ} (n' m : ℕ) : L.term (α ⊕ fin n) → L.term (α ⊕ fin (n + n')) := relabel (sum.map id (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i)) /-- Substitutes the variables in a given term with terms. -/ @[simp] def subst : L.term α → (α → L.term β) → L.term β | (var a) tf := tf a | (func f ts) tf := (func f (λ i, (ts i).subst tf)) end term localized "prefix `&`:max := first_order.language.term.var ∘ sum.inr" in first_order namespace Lhom /-- Maps a term's symbols along a language map. -/ @[simp] def on_term (φ : L →ᴸ L') : L.term α → L'.term α | (var i) := var i | (func f ts) := func (φ.on_function f) (λ i, on_term (ts i)) @[simp] lemma id_on_term : ((Lhom.id L).on_term : L.term α → L.term α) = id := begin ext t, induction t with _ _ _ _ ih, { refl }, { simp_rw [on_term, ih], refl, }, end @[simp] lemma comp_on_term {L'' : language} (φ : L' →ᴸ L'') (ψ : L →ᴸ L') : ((φ.comp ψ).on_term : L.term α → L''.term α) = φ.on_term ∘ ψ.on_term := begin ext t, induction t with _ _ _ _ ih, { refl }, { simp_rw [on_term, ih], refl, }, end end Lhom /-- Maps a term's symbols along a language equivalence. -/ @[simps] def Lequiv.on_term (φ : L ≃ᴸ L') : L.term α ≃ L'.term α := { to_fun := φ.to_Lhom.on_term, inv_fun := φ.inv_Lhom.on_term, left_inv := by rw [function.left_inverse_iff_comp, ← Lhom.comp_on_term, φ.left_inv, Lhom.id_on_term], right_inv := by rw [function.right_inverse_iff_comp, ← Lhom.comp_on_term, φ.right_inv, Lhom.id_on_term] } variables (L) (α) /-- `bounded_formula α n` is the type of formulas with free variables indexed by `α` and up to `n` additional free variables. -/ inductive bounded_formula : ℕ → Type (max u v u') | falsum {} {n} : bounded_formula n | equal {n} (t₁ t₂ : L.term (α ⊕ fin n)) : bounded_formula n | rel {n l : ℕ} (R : L.relations l) (ts : fin l → L.term (α ⊕ fin n)) : bounded_formula n | imp {n} (f₁ f₂ : bounded_formula n) : bounded_formula n | all {n} (f : bounded_formula (n+1)) : bounded_formula n /-- `formula α` is the type of formulas with all free variables indexed by `α`. -/ @[reducible] def formula := L.bounded_formula α 0 /-- A sentence is a formula with no free variables. -/ @[reducible] def sentence := L.formula empty /-- A theory is a set of sentences. -/ @[reducible] def Theory := set L.sentence variables {L} {α} {n : ℕ} /-- Applies a relation to terms as a bounded formula. -/ def relations.bounded_formula {l : ℕ} (R : L.relations n) (ts : fin n → L.term (α ⊕ fin l)) : L.bounded_formula α l := bounded_formula.rel R ts /-- Applies a unary relation to a term as a bounded formula. -/ def relations.bounded_formula₁ (r : L.relations 1) (t : L.term (α ⊕ fin n)) : L.bounded_formula α n := r.bounded_formula ![t] /-- Applies a binary relation to two terms as a bounded formula. -/ def relations.bounded_formula₂ (r : L.relations 2) (t₁ t₂ : L.term (α ⊕ fin n)) : L.bounded_formula α n := r.bounded_formula ![t₁, t₂] /-- The equality of two terms as a bounded formula. -/ def term.bd_equal (t₁ t₂ : L.term (α ⊕ fin n)) : (L.bounded_formula α n) := bounded_formula.equal t₁ t₂ /-- Applies a relation to terms as a bounded formula. -/ def relations.formula (R : L.relations n) (ts : fin n → L.term α) : L.formula α := R.bounded_formula (λ i, (ts i).relabel sum.inl) /-- Applies a unary relation to a term as a formula. -/ def relations.formula₁ (r : L.relations 1) (t : L.term α) : L.formula α := r.formula ![t] /-- Applies a binary relation to two terms as a formula. -/ def relations.formula₂ (r : L.relations 2) (t₁ t₂ : L.term α) : L.formula α := r.formula ![t₁, t₂] /-- The equality of two terms as a first-order formula. -/ def term.equal (t₁ t₂ : L.term α) : (L.formula α) := (t₁.relabel sum.inl).bd_equal (t₂.relabel sum.inl) namespace bounded_formula instance : inhabited (L.bounded_formula α n) := ⟨falsum⟩ instance : has_bot (L.bounded_formula α n) := ⟨falsum⟩ /-- The negation of a bounded formula is also a bounded formula. -/ @[pattern] protected def not (φ : L.bounded_formula α n) : L.bounded_formula α n := φ.imp ⊥ /-- Puts an `∃` quantifier on a bounded formula. -/ @[pattern] protected def ex (φ : L.bounded_formula α (n + 1)) : L.bounded_formula α n := φ.not.all.not instance : has_top (L.bounded_formula α n) := ⟨bounded_formula.not ⊥⟩ instance : has_inf (L.bounded_formula α n) := ⟨λ f g, (f.imp g.not).not⟩ instance : has_sup (L.bounded_formula α n) := ⟨λ f g, f.not.imp g⟩ /-- The biimplication between two bounded formulas. -/ protected def iff (φ ψ : L.bounded_formula α n) := φ.imp ψ ⊓ ψ.imp φ open finset /-- The `finset` of variables used in a given formula. -/ @[simp] def free_var_finset [decidable_eq α] : ∀ {n}, L.bounded_formula α n → finset α | n falsum := ∅ | n (equal t₁ t₂) := t₁.var_finset_left ∪ t₂.var_finset_left | n (rel R ts) := univ.bUnion (λ i, (ts i).var_finset_left) | n (imp f₁ f₂) := f₁.free_var_finset ∪ f₂.free_var_finset | n (all f) := f.free_var_finset /-- Casts `L.bounded_formula α m` as `L.bounded_formula α n`, where `m ≤ n`. -/ @[simp] def cast_le : ∀ {m n : ℕ} (h : m ≤ n), L.bounded_formula α m → L.bounded_formula α n | m n h falsum := falsum | m n h (equal t₁ t₂) := equal (t₁.relabel (sum.map id (fin.cast_le h))) (t₂.relabel (sum.map id (fin.cast_le h))) | m n h (rel R ts) := rel R (term.relabel (sum.map id (fin.cast_le h)) ∘ ts) | m n h (imp f₁ f₂) := (f₁.cast_le h).imp (f₂.cast_le h) | m n h (all f) := (f.cast_le (add_le_add_right h 1)).all @[simp] lemma cast_le_rfl {n} (h : n ≤ n) (φ : L.bounded_formula α n) : φ.cast_le h = φ := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp [fin.cast_le_of_eq], }, { simp [fin.cast_le_of_eq], }, { simp [fin.cast_le_of_eq, ih1, ih2], }, { simp [fin.cast_le_of_eq, ih3], }, end @[simp] lemma cast_le_cast_le {k m n} (km : k ≤ m) (mn : m ≤ n) (φ : L.bounded_formula α k) : (φ.cast_le km).cast_le mn = φ.cast_le (km.trans mn) := begin revert m n, induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3; intros m n km mn, { refl }, { simp }, { simp only [cast_le, eq_self_iff_true, heq_iff_eq, true_and], rw [← function.comp.assoc, relabel_comp_relabel], simp }, { simp [ih1, ih2] }, { simp only [cast_le, ih3] } end @[simp] lemma cast_le_comp_cast_le {k m n} (km : k ≤ m) (mn : m ≤ n) : (bounded_formula.cast_le mn ∘ bounded_formula.cast_le km : L.bounded_formula α k → L.bounded_formula α n) = bounded_formula.cast_le (km.trans mn) := funext (cast_le_cast_le km mn) /-- Restricts a bounded formula to only use a particular set of free variables. -/ def restrict_free_var [decidable_eq α] : Π {n : ℕ} (φ : L.bounded_formula α n) (f : φ.free_var_finset → β), L.bounded_formula β n | n falsum f := falsum | n (equal t₁ t₂) f := equal (t₁.restrict_var_left (f ∘ set.inclusion (subset_union_left _ _))) (t₂.restrict_var_left (f ∘ set.inclusion (subset_union_right _ _))) | n (rel R ts) f := rel R (λ i, (ts i).restrict_var_left (f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i)))) | n (imp φ₁ φ₂) f := (φ₁.restrict_free_var (f ∘ set.inclusion (subset_union_left _ _))).imp (φ₂.restrict_free_var (f ∘ set.inclusion (subset_union_right _ _))) | n (all φ) f := (φ.restrict_free_var f).all /-- Places universal quantifiers on all extra variables of a bounded formula. -/ def alls : ∀ {n}, L.bounded_formula α n → L.formula α | 0 φ := φ | (n + 1) φ := φ.all.alls /-- Places existential quantifiers on all extra variables of a bounded formula. -/ def exs : ∀ {n}, L.bounded_formula α n → L.formula α | 0 φ := φ | (n + 1) φ := φ.ex.exs /-- Maps bounded formulas along a map of terms and a map of relations. -/ def map_term_rel {g : ℕ → ℕ} (ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin (g n))) (fr : ∀ n, L.relations n → L'.relations n) (h : ∀ n, L'.bounded_formula β (g (n + 1)) → L'.bounded_formula β (g n + 1)) : ∀ {n}, L.bounded_formula α n → L'.bounded_formula β (g n) | n falsum := falsum | n (equal t₁ t₂) := equal (ft _ t₁) (ft _ t₂) | n (rel R ts) := rel (fr _ R) (λ i, ft _ (ts i)) | n (imp φ₁ φ₂) := φ₁.map_term_rel.imp φ₂.map_term_rel | n (all φ) := (h n φ.map_term_rel).all /-- Raises all of the `fin`-indexed variables of a formula greater than or equal to `m` by `n'`. -/ def lift_at : ∀ {n : ℕ} (n' m : ℕ), L.bounded_formula α n → L.bounded_formula α (n + n') := λ n n' m φ, φ.map_term_rel (λ k t, t.lift_at n' m) (λ _, id) (λ _, cast_le (by rw [add_assoc, add_comm 1, add_assoc])) @[simp] lemma map_term_rel_map_term_rel {L'' : language} (ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin n)) (fr : ∀ n, L.relations n → L'.relations n) (ft' : ∀ n, L'.term (β ⊕ fin n) → L''.term (γ ⊕ fin n)) (fr' : ∀ n, L'.relations n → L''.relations n) {n} (φ : L.bounded_formula α n) : (φ.map_term_rel ft fr (λ _, id)).map_term_rel ft' fr' (λ _, id) = φ.map_term_rel (λ _, (ft' _) ∘ (ft _)) (λ _, (fr' _) ∘ (fr _)) (λ _, id) := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp [map_term_rel] }, { simp [map_term_rel] }, { simp [map_term_rel, ih1, ih2] }, { simp [map_term_rel, ih3], } end @[simp] lemma map_term_rel_id_id_id {n} (φ : L.bounded_formula α n) : φ.map_term_rel (λ _, id) (λ _, id) (λ _, id) = φ := begin induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp [map_term_rel] }, { simp [map_term_rel] }, { simp [map_term_rel, ih1, ih2] }, { simp [map_term_rel, ih3], } end /-- An equivalence of bounded formulas given by an equivalence of terms and an equivalence of relations. -/ @[simps] def map_term_rel_equiv (ft : ∀ n, L.term (α ⊕ fin n) ≃ L'.term (β ⊕ fin n)) (fr : ∀ n, L.relations n ≃ L'.relations n) {n} : L.bounded_formula α n ≃ L'.bounded_formula β n := ⟨map_term_rel (λ n, ft n) (λ n, fr n) (λ _, id), map_term_rel (λ n, (ft n).symm) (λ n, (fr n).symm) (λ _, id), λ φ, by simp, λ φ, by simp⟩ /-- A function to help relabel the variables in bounded formulas. -/ def relabel_aux (g : α → β ⊕ fin n) (k : ℕ) : α ⊕ fin k → β ⊕ fin (n + k) := sum.map id fin_sum_fin_equiv ∘ equiv.sum_assoc _ _ _ ∘ sum.map g id @[simp] lemma sum_elim_comp_relabel_aux {m : ℕ} {g : α → (β ⊕ fin n)} {v : β → M} {xs : fin (n + m) → M} : sum.elim v xs ∘ relabel_aux g m = sum.elim (sum.elim v (xs ∘ cast_add m) ∘ g) (xs ∘ nat_add n) := begin ext x, cases x, { simp only [bounded_formula.relabel_aux, function.comp_app, sum.map_inl, sum.elim_inl], cases g x with l r; simp }, { simp [bounded_formula.relabel_aux] } end @[simp] lemma relabel_aux_sum_inl (k : ℕ) : relabel_aux (sum.inl : α → α ⊕ fin n) k = sum.map id (nat_add n) := begin ext x, cases x; { simp [relabel_aux] }, end /-- Relabels a bounded formula's variables along a particular function. -/ def relabel (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α k) : L.bounded_formula β (n + k) := φ.map_term_rel (λ _ t, t.relabel (relabel_aux g _)) (λ _, id) (λ _, cast_le (ge_of_eq (add_assoc _ _ _))) @[simp] lemma relabel_falsum (g : α → (β ⊕ fin n)) {k} : (falsum : L.bounded_formula α k).relabel g = falsum := rfl @[simp] lemma relabel_bot (g : α → (β ⊕ fin n)) {k} : (⊥ : L.bounded_formula α k).relabel g = ⊥ := rfl @[simp] lemma relabel_imp (g : α → (β ⊕ fin n)) {k} (φ ψ : L.bounded_formula α k) : (φ.imp ψ).relabel g = (φ.relabel g).imp (ψ.relabel g) := rfl @[simp] lemma relabel_not (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α k) : φ.not.relabel g = (φ.relabel g).not := by simp [bounded_formula.not] @[simp] lemma relabel_all (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α (k + 1)) : φ.all.relabel g = (φ.relabel g).all := begin rw [relabel, map_term_rel, relabel], simp, end @[simp] lemma relabel_ex (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α (k + 1)) : φ.ex.relabel g = (φ.relabel g).ex := by simp [bounded_formula.ex] @[simp] lemma relabel_sum_inl (φ : L.bounded_formula α n) : (φ.relabel sum.inl : L.bounded_formula α (0 + n)) = φ.cast_le (ge_of_eq (zero_add n)) := begin simp only [relabel, relabel_aux_sum_inl], induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp [fin.nat_add_zero, cast_le_of_eq, map_term_rel] }, { simp [fin.nat_add_zero, cast_le_of_eq, map_term_rel] }, { simp [map_term_rel, ih1, ih2], }, { simp [map_term_rel, ih3, cast_le], }, end /-- Substitutes the variables in a given formula with terms. -/ @[simp] def subst {n : ℕ} (φ : L.bounded_formula α n) (f : α → L.term β) : L.bounded_formula β n := φ.map_term_rel (λ _ t, t.subst (sum.elim (term.relabel sum.inl ∘ f) (var ∘ sum.inr))) (λ _, id) (λ _, id) /-- A bijection sending formulas with constants to formulas with extra variables. -/ def constants_vars_equiv : L[[γ]].bounded_formula α n ≃ L.bounded_formula (γ ⊕ α) n := map_term_rel_equiv (λ _, term.constants_vars_equiv_left) (λ _, equiv.sum_empty _ _) /-- Turns the extra variables of a bounded formula into free variables. -/ @[simp] def to_formula : ∀ {n : ℕ}, L.bounded_formula α n → L.formula (α ⊕ fin n) | n falsum := falsum | n (equal t₁ t₂) := t₁.equal t₂ | n (rel R ts) := R.formula ts | n (imp φ₁ φ₂) := φ₁.to_formula.imp φ₂.to_formula | n (all φ) := (φ.to_formula.relabel (sum.elim (sum.inl ∘ sum.inl) (sum.map sum.inr id ∘ fin_sum_fin_equiv.symm))).all variables {l : ℕ} {φ ψ : L.bounded_formula α l} {θ : L.bounded_formula α l.succ} variables {v : α → M} {xs : fin l → M} /-- An atomic formula is either equality or a relation symbol applied to terms. Note that `⊥` and `⊤` are not considered atomic in this convention. -/ inductive is_atomic : L.bounded_formula α n → Prop | equal (t₁ t₂ : L.term (α ⊕ fin n)) : is_atomic (bd_equal t₁ t₂) | rel {l : ℕ} (R : L.relations l) (ts : fin l → L.term (α ⊕ fin n)) : is_atomic (R.bounded_formula ts) lemma not_all_is_atomic (φ : L.bounded_formula α (n + 1)) : ¬ φ.all.is_atomic := λ con, by cases con lemma not_ex_is_atomic (φ : L.bounded_formula α (n + 1)) : ¬ φ.ex.is_atomic := λ con, by cases con lemma is_atomic.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_atomic) (f : α → β ⊕ (fin n)) : (φ.relabel f).is_atomic := is_atomic.rec_on h (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _) lemma is_atomic.lift_at {k m : ℕ} (h : is_atomic φ) : (φ.lift_at k m).is_atomic := is_atomic.rec_on h (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _) lemma is_atomic.cast_le {h : l ≤ n} (hφ : is_atomic φ) : (φ.cast_le h).is_atomic := is_atomic.rec_on hφ (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _) /-- A quantifier-free formula is a formula defined without quantifiers. These are all equivalent to boolean combinations of atomic formulas. -/ inductive is_qf : L.bounded_formula α n → Prop | falsum : is_qf falsum | of_is_atomic {φ} (h : is_atomic φ) : is_qf φ | imp {φ₁ φ₂} (h₁ : is_qf φ₁) (h₂ : is_qf φ₂) : is_qf (φ₁.imp φ₂) lemma is_atomic.is_qf {φ : L.bounded_formula α n} : is_atomic φ → is_qf φ := is_qf.of_is_atomic lemma is_qf_bot : is_qf (⊥ : L.bounded_formula α n) := is_qf.falsum lemma is_qf.not {φ : L.bounded_formula α n} (h : is_qf φ) : is_qf φ.not := h.imp is_qf_bot lemma is_qf.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_qf) (f : α → β ⊕ (fin n)) : (φ.relabel f).is_qf := is_qf.rec_on h is_qf_bot (λ _ h, (h.relabel f).is_qf) (λ _ _ _ _ h1 h2, h1.imp h2) lemma is_qf.lift_at {k m : ℕ} (h : is_qf φ) : (φ.lift_at k m).is_qf := is_qf.rec_on h is_qf_bot (λ _ ih, ih.lift_at.is_qf) (λ _ _ _ _ ih1 ih2, ih1.imp ih2) lemma is_qf.cast_le {h : l ≤ n} (hφ : is_qf φ) : (φ.cast_le h).is_qf := is_qf.rec_on hφ is_qf_bot (λ _ ih, ih.cast_le.is_qf) (λ _ _ _ _ ih1 ih2, ih1.imp ih2) lemma not_all_is_qf (φ : L.bounded_formula α (n + 1)) : ¬ φ.all.is_qf := λ con, begin cases con with _ con, exact (φ.not_all_is_atomic con), end lemma not_ex_is_qf (φ : L.bounded_formula α (n + 1)) : ¬ φ.ex.is_qf := λ con, begin cases con with _ con _ _ con, { exact (φ.not_ex_is_atomic con) }, { exact not_all_is_qf _ con } end /-- Indicates that a bounded formula is in prenex normal form - that is, it consists of quantifiers applied to a quantifier-free formula. -/ inductive is_prenex : ∀ {n}, L.bounded_formula α n → Prop | of_is_qf {n} {φ : L.bounded_formula α n} (h : is_qf φ) : is_prenex φ | all {n} {φ : L.bounded_formula α (n + 1)} (h : is_prenex φ) : is_prenex φ.all | ex {n} {φ : L.bounded_formula α (n + 1)} (h : is_prenex φ) : is_prenex φ.ex lemma is_qf.is_prenex {φ : L.bounded_formula α n} : is_qf φ → is_prenex φ := is_prenex.of_is_qf lemma is_atomic.is_prenex {φ : L.bounded_formula α n} (h : is_atomic φ) : is_prenex φ := h.is_qf.is_prenex lemma is_prenex.induction_on_all_not {P : ∀ {n}, L.bounded_formula α n → Prop} {φ : L.bounded_formula α n} (h : is_prenex φ) (hq : ∀ {m} {ψ : L.bounded_formula α m}, ψ.is_qf → P ψ) (ha : ∀ {m} {ψ : L.bounded_formula α (m + 1)}, P ψ → P ψ.all) (hn : ∀ {m} {ψ : L.bounded_formula α m}, P ψ → P ψ.not) : P φ := is_prenex.rec_on h (λ _ _, hq) (λ _ _ _, ha) (λ _ _ _ ih, hn (ha (hn ih))) lemma is_prenex.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_prenex) (f : α → β ⊕ (fin n)) : (φ.relabel f).is_prenex := is_prenex.rec_on h (λ _ _ h, (h.relabel f).is_prenex) (λ _ _ _ h, by simp [h.all]) (λ _ _ _ h, by simp [h.ex]) lemma is_prenex.cast_le (hφ : is_prenex φ) : ∀ {n} {h : l ≤ n}, (φ.cast_le h).is_prenex := is_prenex.rec_on hφ (λ _ _ ih _ _, ih.cast_le.is_prenex) (λ _ _ _ ih _ _, ih.all) (λ _ _ _ ih _ _, ih.ex) lemma is_prenex.lift_at {k m : ℕ} (h : is_prenex φ) : (φ.lift_at k m).is_prenex := is_prenex.rec_on h (λ _ _ ih, ih.lift_at.is_prenex) (λ _ _ _ ih, ih.cast_le.all) (λ _ _ _ ih, ih.cast_le.ex) /-- An auxiliary operation to `first_order.language.bounded_formula.to_prenex`. If `φ` is quantifier-free and `ψ` is in prenex normal form, then `φ.to_prenex_imp_right ψ` is a prenex normal form for `φ.imp ψ`. -/ def to_prenex_imp_right : ∀ {n}, L.bounded_formula α n → L.bounded_formula α n → L.bounded_formula α n | n φ (bounded_formula.ex ψ) := ((φ.lift_at 1 n).to_prenex_imp_right ψ).ex | n φ (all ψ) := ((φ.lift_at 1 n).to_prenex_imp_right ψ).all | n φ ψ := φ.imp ψ lemma is_qf.to_prenex_imp_right {φ : L.bounded_formula α n} : Π {ψ : L.bounded_formula α n}, is_qf ψ → (φ.to_prenex_imp_right ψ = φ.imp ψ) | _ is_qf.falsum := rfl | _ (is_qf.of_is_atomic (is_atomic.equal _ _)) := rfl | _ (is_qf.of_is_atomic (is_atomic.rel _ _)) := rfl | _ (is_qf.imp is_qf.falsum _) := rfl | _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.equal _ _)) _) := rfl | _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.rel _ _)) _) := rfl | _ (is_qf.imp (is_qf.imp _ _) _) := rfl lemma is_prenex_to_prenex_imp_right {φ ψ : L.bounded_formula α n} (hφ : is_qf φ) (hψ : is_prenex ψ) : is_prenex (φ.to_prenex_imp_right ψ) := begin induction hψ with _ _ hψ _ _ _ ih1 _ _ _ ih2, { rw hψ.to_prenex_imp_right, exact (hφ.imp hψ).is_prenex }, { exact (ih1 hφ.lift_at).all }, { exact (ih2 hφ.lift_at).ex } end /-- An auxiliary operation to `first_order.language.bounded_formula.to_prenex`. If `φ` and `ψ` are in prenex normal form, then `φ.to_prenex_imp ψ` is a prenex normal form for `φ.imp ψ`. -/ def to_prenex_imp : ∀ {n}, L.bounded_formula α n → L.bounded_formula α n → L.bounded_formula α n | n (bounded_formula.ex φ) ψ := (φ.to_prenex_imp (ψ.lift_at 1 n)).all | n (all φ) ψ := (φ.to_prenex_imp (ψ.lift_at 1 n)).ex | _ φ ψ := φ.to_prenex_imp_right ψ lemma is_qf.to_prenex_imp : Π {φ ψ : L.bounded_formula α n}, φ.is_qf → φ.to_prenex_imp ψ = φ.to_prenex_imp_right ψ | _ _ is_qf.falsum := rfl | _ _ (is_qf.of_is_atomic (is_atomic.equal _ _)) := rfl | _ _ (is_qf.of_is_atomic (is_atomic.rel _ _)) := rfl | _ _ (is_qf.imp is_qf.falsum _) := rfl | _ _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.equal _ _)) _) := rfl | _ _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.rel _ _)) _) := rfl | _ _ (is_qf.imp (is_qf.imp _ _) _) := rfl lemma is_prenex_to_prenex_imp {φ ψ : L.bounded_formula α n} (hφ : is_prenex φ) (hψ : is_prenex ψ) : is_prenex (φ.to_prenex_imp ψ) := begin induction hφ with _ _ hφ _ _ _ ih1 _ _ _ ih2, { rw hφ.to_prenex_imp, exact is_prenex_to_prenex_imp_right hφ hψ }, { exact (ih1 hψ.lift_at).ex }, { exact (ih2 hψ.lift_at).all } end /-- For any bounded formula `φ`, `φ.to_prenex` is a semantically-equivalent formula in prenex normal form. -/ def to_prenex : ∀ {n}, L.bounded_formula α n → L.bounded_formula α n | _ falsum := ⊥ | _ (equal t₁ t₂) := t₁.bd_equal t₂ | _ (rel R ts) := rel R ts | _ (imp f₁ f₂) := f₁.to_prenex.to_prenex_imp f₂.to_prenex | _ (all f) := f.to_prenex.all lemma to_prenex_is_prenex (φ : L.bounded_formula α n) : φ.to_prenex.is_prenex := bounded_formula.rec_on φ (λ _, is_qf_bot.is_prenex) (λ _ _ _, (is_atomic.equal _ _).is_prenex) (λ _ _ _ _, (is_atomic.rel _ _).is_prenex) (λ _ _ _ h1 h2, is_prenex_to_prenex_imp h1 h2) (λ _ _, is_prenex.all) end bounded_formula namespace Lhom open bounded_formula /-- Maps a bounded formula's symbols along a language map. -/ @[simp] def on_bounded_formula (g : L →ᴸ L') : ∀ {k : ℕ}, L.bounded_formula α k → L'.bounded_formula α k | k falsum := falsum | k (equal t₁ t₂) := (g.on_term t₁).bd_equal (g.on_term t₂) | k (rel R ts) := (g.on_relation R).bounded_formula (g.on_term ∘ ts) | k (imp f₁ f₂) := (on_bounded_formula f₁).imp (on_bounded_formula f₂) | k (all f) := (on_bounded_formula f).all @[simp] lemma id_on_bounded_formula : ((Lhom.id L).on_bounded_formula : L.bounded_formula α n → L.bounded_formula α n) = id := begin ext f, induction f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { rw [on_bounded_formula, Lhom.id_on_term, id.def, id.def, id.def, bd_equal] }, { rw [on_bounded_formula, Lhom.id_on_term], refl, }, { rw [on_bounded_formula, ih1, ih2, id.def, id.def, id.def] }, { rw [on_bounded_formula, ih3, id.def, id.def] } end @[simp] lemma comp_on_bounded_formula {L'' : language} (φ : L' →ᴸ L'') (ψ : L →ᴸ L') : ((φ.comp ψ).on_bounded_formula : L.bounded_formula α n → L''.bounded_formula α n) = φ.on_bounded_formula ∘ ψ.on_bounded_formula := begin ext f, induction f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3, { refl }, { simp only [on_bounded_formula, comp_on_term, function.comp_app], refl, }, { simp only [on_bounded_formula, comp_on_relation, comp_on_term, function.comp_app], refl }, { simp only [on_bounded_formula, function.comp_app, ih1, ih2, eq_self_iff_true, and_self], }, { simp only [ih3, on_bounded_formula, function.comp_app] } end /-- Maps a formula's symbols along a language map. -/ def on_formula (g : L →ᴸ L') : L.formula α → L'.formula α := g.on_bounded_formula /-- Maps a sentence's symbols along a language map. -/ def on_sentence (g : L →ᴸ L') : L.sentence → L'.sentence := g.on_formula /-- Maps a theory's symbols along a language map. -/ def on_Theory (g : L →ᴸ L') (T : L.Theory) : L'.Theory := g.on_sentence '' T @[simp] lemma mem_on_Theory {g : L →ᴸ L'} {T : L.Theory} {φ : L'.sentence} : φ ∈ g.on_Theory T ↔ ∃ φ₀, φ₀ ∈ T ∧ g.on_sentence φ₀ = φ := set.mem_image _ _ _ end Lhom namespace Lequiv /-- Maps a bounded formula's symbols along a language equivalence. -/ @[simps] def on_bounded_formula (φ : L ≃ᴸ L') : L.bounded_formula α n ≃ L'.bounded_formula α n := { to_fun := φ.to_Lhom.on_bounded_formula, inv_fun := φ.inv_Lhom.on_bounded_formula, left_inv := by rw [function.left_inverse_iff_comp, ← Lhom.comp_on_bounded_formula, φ.left_inv, Lhom.id_on_bounded_formula], right_inv := by rw [function.right_inverse_iff_comp, ← Lhom.comp_on_bounded_formula, φ.right_inv, Lhom.id_on_bounded_formula] } lemma on_bounded_formula_symm (φ : L ≃ᴸ L') : (φ.on_bounded_formula.symm : L'.bounded_formula α n ≃ L.bounded_formula α n) = φ.symm.on_bounded_formula := rfl /-- Maps a formula's symbols along a language equivalence. -/ def on_formula (φ : L ≃ᴸ L') : L.formula α ≃ L'.formula α := φ.on_bounded_formula @[simp] lemma on_formula_apply (φ : L ≃ᴸ L') : (φ.on_formula : L.formula α → L'.formula α) = φ.to_Lhom.on_formula := rfl @[simp] lemma on_formula_symm (φ : L ≃ᴸ L') : (φ.on_formula.symm : L'.formula α ≃ L.formula α) = φ.symm.on_formula := rfl /-- Maps a sentence's symbols along a language equivalence. -/ @[simps] def on_sentence (φ : L ≃ᴸ L') : L.sentence ≃ L'.sentence := φ.on_formula end Lequiv localized "infix ` =' `:88 := first_order.language.term.bd_equal" in first_order -- input \~- or \simeq localized "infixr ` ⟹ `:62 := first_order.language.bounded_formula.imp" in first_order -- input \==> localized "prefix `∀'`:110 := first_order.language.bounded_formula.all" in first_order localized "prefix `∼`:max := first_order.language.bounded_formula.not" in first_order -- input \~, the ASCII character ~ has too low precedence localized "infix ` ⇔ `:61 := first_order.language.bounded_formula.iff" in first_order -- input \<=> localized "prefix `∃'`:110 := first_order.language.bounded_formula.ex" in first_order -- input \ex namespace formula /-- Relabels a formula's variables along a particular function. -/ def relabel (g : α → β) : L.formula α → L.formula β := @bounded_formula.relabel _ _ _ 0 (sum.inl ∘ g) 0 /-- The graph of a function as a first-order formula. -/ def graph (f : L.functions n) : L.formula (fin (n + 1)) := equal (var 0) (func f (λ i, var i.succ)) /-- The negation of a formula. -/ protected def not (φ : L.formula α) : L.formula α := φ.not /-- The implication between formulas, as a formula. -/ protected def imp : L.formula α → L.formula α → L.formula α := bounded_formula.imp /-- The biimplication between formulas, as a formula. -/ protected def iff (φ ψ : L.formula α) : L.formula α := φ.iff ψ lemma is_atomic_graph (f : L.functions n) : (graph f).is_atomic := bounded_formula.is_atomic.equal _ _ end formula namespace relations variable (r : L.relations 2) /-- The sentence indicating that a basic relation symbol is reflexive. -/ protected def reflexive : L.sentence := ∀' r.bounded_formula₂ &0 &0 /-- The sentence indicating that a basic relation symbol is irreflexive. -/ protected def irreflexive : L.sentence := ∀' ∼ (r.bounded_formula₂ &0 &0) /-- The sentence indicating that a basic relation symbol is symmetric. -/ protected def symmetric : L.sentence := ∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ r.bounded_formula₂ &1 &0) /-- The sentence indicating that a basic relation symbol is antisymmetric. -/ protected def antisymmetric : L.sentence := ∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ (r.bounded_formula₂ &1 &0 ⟹ term.bd_equal &0 &1)) /-- The sentence indicating that a basic relation symbol is transitive. -/ protected def transitive : L.sentence := ∀' ∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ r.bounded_formula₂ &1 &2 ⟹ r.bounded_formula₂ &0 &2) /-- The sentence indicating that a basic relation symbol is total. -/ protected def total : L.sentence := ∀' ∀' (r.bounded_formula₂ &0 &1 ⊔ r.bounded_formula₂ &1 &0) end relations section cardinality variable (L) /-- A sentence indicating that a structure has `n` distinct elements. -/ protected def sentence.card_ge (n) : L.sentence := (((((list.fin_range n).product (list.fin_range n)).filter (λ ij : _ × _, ij.1 ≠ ij.2)).map (λ (ij : _ × _), ∼ ((& ij.1).bd_equal (& ij.2)))).foldr (⊓) ⊤).exs /-- A theory indicating that a structure is infinite. -/ def infinite_theory : L.Theory := set.range (sentence.card_ge L) /-- A theory that indicates a structure is nonempty. -/ def nonempty_theory : L.Theory := {sentence.card_ge L 1} /-- A theory indicating that each of a set of constants is distinct. -/ def distinct_constants_theory (s : set α) : L[[α]].Theory := (λ ab : α × α, (((L.con ab.1).term.equal (L.con ab.2).term).not)) '' (s ×ˢ s ∩ (set.diagonal α)ᶜ) variables {L} {α} open set lemma monotone_distinct_constants_theory : monotone (L.distinct_constants_theory : set α → L[[α]].Theory) := λ s t st, (image_subset _ (inter_subset_inter_left _ (prod_mono st st))) lemma directed_distinct_constants_theory : directed (⊆) (L.distinct_constants_theory : set α → L[[α]].Theory) := monotone.directed_le monotone_distinct_constants_theory lemma distinct_constants_theory_eq_Union (s : set α) : L.distinct_constants_theory s = ⋃ (t : finset s), L.distinct_constants_theory (t.map (function.embedding.subtype (λ x, x ∈ s))) := begin classical, simp only [distinct_constants_theory], rw [← image_Union, ← Union_inter], refine congr rfl (congr (congr rfl _) rfl), ext ⟨i, j⟩, simp only [prod_mk_mem_set_prod_eq, finset.coe_map, function.embedding.coe_subtype, mem_Union, mem_image, finset.mem_coe, subtype.exists, subtype.coe_mk, exists_and_distrib_right, exists_eq_right], refine ⟨λ h, ⟨{⟨i, h.1⟩, ⟨j, h.2⟩}, ⟨h.1, _⟩, ⟨h.2, _⟩⟩, _⟩, { simp }, { simp }, { rintros ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩, exact ⟨is, js⟩ } end end cardinality end language end first_order