/- Copyright (c) 2021 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import order.closure import model_theory.semantics import model_theory.encoding /-! # First-Order Substructures This file defines substructures of first-order structures in a similar manner to the various substructures appearing in the algebra library. ## Main Definitions * A `first_order.language.substructure` is defined so that `L.substructure M` is the type of all substructures of the `L`-structure `M`. * `first_order.language.substructure.closure` is defined so that if `s : set M`, `closure L s` is the least substructure of `M` containing `s`. * `first_order.language.substructure.comap` is defined so that `s.comap f` is the preimage of the substructure `s` under the homomorphism `f`, as a substructure. * `first_order.language.substructure.map` is defined so that `s.map f` is the image of the substructure `s` under the homomorphism `f`, as a substructure. * `first_order.language.hom.range` is defined so that `f.map` is the range of the the homomorphism `f`, as a substructure. * `first_order.language.hom.dom_restrict` and `first_order.language.hom.cod_restrict` restrict the domain and codomain respectively of first-order homomorphisms to substructures. * `first_order.language.embedding.dom_restrict` and `first_order.language.embedding.cod_restrict` restrict the domain and codomain respectively of first-order embeddings to substructures. * `first_order.language.substructure.inclusion` is the inclusion embedding between substructures. ## Main Results * `L.substructure M` forms a `complete_lattice`. -/ universes u v w namespace first_order namespace language variables {L : language.{u v}} {M : Type w} {N P : Type*} variables [L.Structure M] [L.Structure N] [L.Structure P] open_locale first_order cardinal open Structure cardinal section closed_under open set variables {n : ℕ} (f : L.functions n) (s : set M) /-- Indicates that a set in a given structure is a closed under a function symbol. -/ def closed_under : Prop := ∀ (x : fin n → M), (∀ i : fin n, x i ∈ s) → fun_map f x ∈ s variable (L) @[simp] lemma closed_under_univ : closed_under f (univ : set M) := λ _ _, mem_univ _ variables {L f s} {t : set M} namespace closed_under lemma inter (hs : closed_under f s) (ht : closed_under f t) : closed_under f (s ∩ t) := λ x h, mem_inter (hs x (λ i, mem_of_mem_inter_left (h i))) (ht x (λ i, mem_of_mem_inter_right (h i))) lemma inf (hs : closed_under f s) (ht : closed_under f t) : closed_under f (s ⊓ t) := hs.inter ht variables {S : set (set M)} lemma Inf (hS : ∀ s, s ∈ S → closed_under f s) : closed_under f (Inf S) := λ x h s hs, hS s hs x (λ i, h i s hs) end closed_under end closed_under variables (L) (M) /-- A substructure of a structure `M` is a set closed under application of function symbols. -/ structure substructure := (carrier : set M) (fun_mem : ∀{n}, ∀ (f : L.functions n), closed_under f carrier) variables {L} {M} namespace substructure instance : set_like (L.substructure M) M := ⟨substructure.carrier, λ p q h, by cases p; cases q; congr'⟩ /-- See Note [custom simps projection] -/ def simps.coe (S : L.substructure M) : set M := S initialize_simps_projections substructure (carrier → coe) @[simp] lemma mem_carrier {s : L.substructure M} {x : M} : x ∈ s.carrier ↔ x ∈ s := iff.rfl /-- Two substructures are equal if they have the same elements. -/ @[ext] theorem ext {S T : L.substructure M} (h : ∀ x, x ∈ S ↔ x ∈ T) : S = T := set_like.ext h /-- Copy a substructure replacing `carrier` with a set that is equal to it. -/ protected def copy (S : L.substructure M) (s : set M) (hs : s = S) : L.substructure M := { carrier := s, fun_mem := λ n f, hs.symm ▸ (S.fun_mem f) } end substructure variable {S : L.substructure M} lemma term.realize_mem {α : Type*} (t : L.term α) (xs : α → M) (h : ∀ a, xs a ∈ S) : t.realize xs ∈ S := begin induction t with a n f ts ih, { exact h a }, { exact substructure.fun_mem _ _ _ ih } end namespace substructure @[simp] lemma coe_copy {s : set M} (hs : s = S) : (S.copy s hs : set M) = s := rfl lemma copy_eq {s : set M} (hs : s = S) : S.copy s hs = S := set_like.coe_injective hs lemma constants_mem (c : L.constants) : ↑c ∈ S := mem_carrier.2 (S.fun_mem c _ fin.elim0) /-- The substructure `M` of the structure `M`. -/ instance : has_top (L.substructure M) := ⟨{ carrier := set.univ, fun_mem := λ n f x h, set.mem_univ _ }⟩ instance : inhabited (L.substructure M) := ⟨⊤⟩ @[simp] lemma mem_top (x : M) : x ∈ (⊤ : L.substructure M) := set.mem_univ x @[simp] lemma coe_top : ((⊤ : L.substructure M) : set M) = set.univ := rfl /-- The inf of two substructures is their intersection. -/ instance : has_inf (L.substructure M) := ⟨λ S₁ S₂, { carrier := S₁ ∩ S₂, fun_mem := λ n f, (S₁.fun_mem f).inf (S₂.fun_mem f) }⟩ @[simp] lemma coe_inf (p p' : L.substructure M) : ((p ⊓ p' : L.substructure M) : set M) = p ∩ p' := rfl @[simp] lemma mem_inf {p p' : L.substructure M} {x : M} : x ∈ p ⊓ p' ↔ x ∈ p ∧ x ∈ p' := iff.rfl instance : has_Inf (L.substructure M) := ⟨λ s, { carrier := ⋂ t ∈ s, ↑t, fun_mem := λ n f, closed_under.Inf begin rintro _ ⟨t, rfl⟩, by_cases h : t ∈ s, { simpa [h] using t.fun_mem f }, { simp [h] } end }⟩ @[simp, norm_cast] lemma coe_Inf (S : set (L.substructure M)) : ((Inf S : L.substructure M) : set M) = ⋂ s ∈ S, ↑s := rfl lemma mem_Inf {S : set (L.substructure M)} {x : M} : x ∈ Inf S ↔ ∀ p ∈ S, x ∈ p := set.mem_Inter₂ lemma mem_infi {ι : Sort*} {S : ι → L.substructure M} {x : M} : (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [infi, mem_Inf, set.forall_range_iff] @[simp, norm_cast] lemma coe_infi {ι : Sort*} {S : ι → L.substructure M} : (↑(⨅ i, S i) : set M) = ⋂ i, S i := by simp only [infi, coe_Inf, set.bInter_range] /-- Substructures of a structure form a complete lattice. -/ instance : complete_lattice (L.substructure M) := { le := (≤), lt := (<), top := (⊤), le_top := λ S x hx, mem_top x, inf := (⊓), Inf := has_Inf.Inf, le_inf := λ a b c ha hb x hx, ⟨ha hx, hb hx⟩, inf_le_left := λ a b x, and.left, inf_le_right := λ a b x, and.right, .. complete_lattice_of_Inf (L.substructure M) $ λ s, is_glb.of_image (λ S T, show (S : set M) ≤ T ↔ S ≤ T, from set_like.coe_subset_coe) is_glb_binfi } variable (L) /-- The `L.substructure` generated by a set. -/ def closure : lower_adjoint (coe : L.substructure M → set M) := ⟨λ s, Inf {S | s ⊆ S}, λ s S, ⟨set.subset.trans (λ x hx, mem_Inf.2 $ λ S hS, hS hx), λ h, Inf_le h⟩⟩ variables {L} {s : set M} lemma mem_closure {x : M} : x ∈ closure L s ↔ ∀ S : L.substructure M, s ⊆ S → x ∈ S := mem_Inf /-- The substructure generated by a set includes the set. -/ @[simp] lemma subset_closure : s ⊆ closure L s := (closure L).le_closure s lemma not_mem_of_not_mem_closure {P : M} (hP : P ∉ closure L s) : P ∉ s := λ h, hP (subset_closure h) @[simp] lemma closed (S : L.substructure M) : (closure L).closed (S : set M) := congr rfl ((closure L).eq_of_le set.subset.rfl (λ x xS, mem_closure.2 (λ T hT, hT xS))) open set /-- A substructure `S` includes `closure L s` if and only if it includes `s`. -/ @[simp] lemma closure_le : closure L s ≤ S ↔ s ⊆ S := (closure L).closure_le_closed_iff_le s S.closed /-- Substructure closure of a set is monotone in its argument: if `s ⊆ t`, then `closure L s ≤ closure L t`. -/ lemma closure_mono ⦃s t : set M⦄ (h : s ⊆ t) : closure L s ≤ closure L t := (closure L).monotone h lemma closure_eq_of_le (h₁ : s ⊆ S) (h₂ : S ≤ closure L s) : closure L s = S := (closure L).eq_of_le h₁ h₂ lemma coe_closure_eq_range_term_realize : (closure L s : set M) = range (@term.realize L _ _ _ (coe : s → M)) := begin let S : L.substructure M := ⟨range (term.realize coe), λ n f x hx, _⟩, { change _ = (S : set M), rw ← set_like.ext'_iff, refine closure_eq_of_le (λ x hx, ⟨var ⟨x, hx⟩, rfl⟩) (le_Inf (λ S' hS', _)), { rintro _ ⟨t, rfl⟩, exact t.realize_mem _ (λ i, hS' i.2) } }, { simp only [mem_range] at *, refine ⟨func f (λ i, (classical.some (hx i))), _⟩, simp only [term.realize, λ i, classical.some_spec (hx i)] } end instance small_closure [small.{u} s] : small.{u} (closure L s) := begin rw [← set_like.coe_sort_coe, substructure.coe_closure_eq_range_term_realize], exact small_range _, end lemma mem_closure_iff_exists_term {x : M} : x ∈ closure L s ↔ ∃ (t : L.term s), t.realize (coe : s → M) = x := by rw [← set_like.mem_coe, coe_closure_eq_range_term_realize, mem_range] lemma lift_card_closure_le_card_term : cardinal.lift.{max u w} (# (closure L s)) ≤ # (L.term s) := begin rw [← set_like.coe_sort_coe, coe_closure_eq_range_term_realize], rw [← cardinal.lift_id'.{w (max u w)} (# (L.term s))], exact cardinal.mk_range_le_lift, end theorem lift_card_closure_le : cardinal.lift.{u w} (# (closure L s)) ≤ max ℵ₀ (cardinal.lift.{u w} (#s) + cardinal.lift.{w u} (#(Σ i, L.functions i))) := begin rw ←lift_umax, refine lift_card_closure_le_card_term.trans (term.card_le.trans _), rw [mk_sum, lift_umax], end variable (L) lemma _root_.set.countable.substructure_closure [L.countable_functions] (h : s.countable) : nonempty (encodable (closure L s)) := begin haveI : nonempty (encodable s) := h, rw [encodable_iff, ← lift_le_aleph_0], exact lift_card_closure_le_card_term.trans term.card_le_aleph_0, end variables {L} (S) /-- An induction principle for closure membership. If `p` holds for all elements of `s`, and is preserved under function symbols, then `p` holds for all elements of the closure of `s`. -/ @[elab_as_eliminator] lemma closure_induction {p : M → Prop} {x} (h : x ∈ closure L s) (Hs : ∀ x ∈ s, p x) (Hfun : ∀ {n : ℕ} (f : L.functions n), closed_under f (set_of p)) : p x := (@closure_le L M _ ⟨set_of p, λ n, Hfun⟩ _).2 Hs h /-- If `s` is a dense set in a structure `M`, `substructure.closure L s = ⊤`, then in order to prove that some predicate `p` holds for all `x : M` it suffices to verify `p x` for `x ∈ s`, and verify that `p` is preserved under function symbols. -/ @[elab_as_eliminator] lemma dense_induction {p : M → Prop} (x : M) {s : set M} (hs : closure L s = ⊤) (Hs : ∀ x ∈ s, p x) (Hfun : ∀ {n : ℕ} (f : L.functions n), closed_under f (set_of p)) : p x := have ∀ x ∈ closure L s, p x, from λ x hx, closure_induction hx Hs (λ n, Hfun), by simpa [hs] using this x variables (L) (M) /-- `closure` forms a Galois insertion with the coercion to set. -/ protected def gi : galois_insertion (@closure L M _) coe := { choice := λ s _, closure L s, gc := (closure L).gc, le_l_u := λ s, subset_closure, choice_eq := λ s h, rfl } variables {L} {M} /-- Closure of a substructure `S` equals `S`. -/ @[simp] lemma closure_eq : closure L (S : set M) = S := (substructure.gi L M).l_u_eq S @[simp] lemma closure_empty : closure L (∅ : set M) = ⊥ := (substructure.gi L M).gc.l_bot @[simp] lemma closure_univ : closure L (univ : set M) = ⊤ := @coe_top L M _ ▸ closure_eq ⊤ lemma closure_union (s t : set M) : closure L (s ∪ t) = closure L s ⊔ closure L t := (substructure.gi L M).gc.l_sup lemma closure_Union {ι} (s : ι → set M) : closure L (⋃ i, s i) = ⨆ i, closure L (s i) := (substructure.gi L M).gc.l_supr instance small_bot : small.{u} (⊥ : L.substructure M) := begin rw ← closure_empty, exact substructure.small_closure end /-! ### `comap` and `map` -/ /-- The preimage of a substructure along a homomorphism is a substructure. -/ @[simps] def comap (φ : M →[L] N) (S : L.substructure N) : L.substructure M := { carrier := (φ ⁻¹' S), fun_mem := λ n f x hx, begin rw [mem_preimage, φ.map_fun], exact S.fun_mem f (φ ∘ x) hx, end } @[simp] lemma mem_comap {S : L.substructure N} {f : M →[L] N} {x : M} : x ∈ S.comap f ↔ f x ∈ S := iff.rfl lemma comap_comap (S : L.substructure P) (g : N →[L] P) (f : M →[L] N) : (S.comap g).comap f = S.comap (g.comp f) := rfl @[simp] lemma comap_id (S : L.substructure P) : S.comap (hom.id _ _) = S := ext (by simp) /-- The image of a substructure along a homomorphism is a substructure. -/ @[simps] def map (φ : M →[L] N) (S : L.substructure M) : L.substructure N := { carrier := (φ '' S), fun_mem := λ n f x hx, (mem_image _ _ _).1 ⟨fun_map f (λ i, classical.some (hx i)), S.fun_mem f _ (λ i, (classical.some_spec (hx i)).1), begin simp only [hom.map_fun, set_like.mem_coe], exact congr rfl (funext (λ i, (classical.some_spec (hx i)).2)), end⟩ } @[simp] lemma mem_map {f : M →[L] N} {S : L.substructure M} {y : N} : y ∈ S.map f ↔ ∃ x ∈ S, f x = y := mem_image_iff_bex lemma mem_map_of_mem (f : M →[L] N) {S : L.substructure M} {x : M} (hx : x ∈ S) : f x ∈ S.map f := mem_image_of_mem f hx lemma apply_coe_mem_map (f : M →[L] N) (S : L.substructure M) (x : S) : f x ∈ S.map f := mem_map_of_mem f x.prop lemma map_map (g : N →[L] P) (f : M →[L] N) : (S.map f).map g = S.map (g.comp f) := set_like.coe_injective $ image_image _ _ _ lemma map_le_iff_le_comap {f : M →[L] N} {S : L.substructure M} {T : L.substructure N} : S.map f ≤ T ↔ S ≤ T.comap f := image_subset_iff lemma gc_map_comap (f : M →[L] N) : galois_connection (map f) (comap f) := λ S T, map_le_iff_le_comap lemma map_le_of_le_comap {T : L.substructure N} {f : M →[L] N} : S ≤ T.comap f → S.map f ≤ T := (gc_map_comap f).l_le lemma le_comap_of_map_le {T : L.substructure N} {f : M →[L] N} : S.map f ≤ T → S ≤ T.comap f := (gc_map_comap f).le_u lemma le_comap_map {f : M →[L] N} : S ≤ (S.map f).comap f := (gc_map_comap f).le_u_l _ lemma map_comap_le {S : L.substructure N} {f : M →[L] N} : (S.comap f).map f ≤ S := (gc_map_comap f).l_u_le _ lemma monotone_map {f : M →[L] N} : monotone (map f) := (gc_map_comap f).monotone_l lemma monotone_comap {f : M →[L] N} : monotone (comap f) := (gc_map_comap f).monotone_u @[simp] lemma map_comap_map {f : M →[L] N} : ((S.map f).comap f).map f = S.map f := (gc_map_comap f).l_u_l_eq_l _ @[simp] lemma comap_map_comap {S : L.substructure N} {f : M →[L] N} : ((S.comap f).map f).comap f = S.comap f := (gc_map_comap f).u_l_u_eq_u _ lemma map_sup (S T : L.substructure M) (f : M →[L] N) : (S ⊔ T).map f = S.map f ⊔ T.map f := (gc_map_comap f).l_sup lemma map_supr {ι : Sort*} (f : M →[L] N) (s : ι → L.substructure M) : (supr s).map f = ⨆ i, (s i).map f := (gc_map_comap f).l_supr lemma comap_inf (S T : L.substructure N) (f : M →[L] N) : (S ⊓ T).comap f = S.comap f ⊓ T.comap f := (gc_map_comap f).u_inf lemma comap_infi {ι : Sort*} (f : M →[L] N) (s : ι → L.substructure N) : (infi s).comap f = ⨅ i, (s i).comap f := (gc_map_comap f).u_infi @[simp] lemma map_bot (f : M →[L] N) : (⊥ : L.substructure M).map f = ⊥ := (gc_map_comap f).l_bot @[simp] lemma comap_top (f : M →[L] N) : (⊤ : L.substructure N).comap f = ⊤ := (gc_map_comap f).u_top @[simp] lemma map_id (S : L.substructure M) : S.map (hom.id L M) = S := ext (λ x, ⟨λ ⟨_, h, rfl⟩, h, λ h, ⟨_, h, rfl⟩⟩) lemma map_closure (f : M →[L] N) (s : set M) : (closure L s).map f = closure L (f '' s) := eq.symm $ closure_eq_of_le (set.image_subset f subset_closure) $ map_le_iff_le_comap.2 $ closure_le.2 $ λ x hx, subset_closure ⟨x, hx, rfl⟩ @[simp] lemma closure_image (f : M →[L] N) : closure L (f '' s) = map f (closure L s) := (map_closure f s).symm section galois_coinsertion variables {ι : Type*} {f : M →[L] N} (hf : function.injective f) include hf /-- `map f` and `comap f` form a `galois_coinsertion` when `f` is injective. -/ def gci_map_comap : galois_coinsertion (map f) (comap f) := (gc_map_comap f).to_galois_coinsertion (λ S x, by simp [mem_comap, mem_map, hf.eq_iff]) lemma comap_map_eq_of_injective (S : L.substructure M) : (S.map f).comap f = S := (gci_map_comap hf).u_l_eq _ lemma comap_surjective_of_injective : function.surjective (comap f) := (gci_map_comap hf).u_surjective lemma map_injective_of_injective : function.injective (map f) := (gci_map_comap hf).l_injective lemma comap_inf_map_of_injective (S T : L.substructure M) : (S.map f ⊓ T.map f).comap f = S ⊓ T := (gci_map_comap hf).u_inf_l _ _ lemma comap_infi_map_of_injective (S : ι → L.substructure M) : (⨅ i, (S i).map f).comap f = infi S := (gci_map_comap hf).u_infi_l _ lemma comap_sup_map_of_injective (S T : L.substructure M) : (S.map f ⊔ T.map f).comap f = S ⊔ T := (gci_map_comap hf).u_sup_l _ _ lemma comap_supr_map_of_injective (S : ι → L.substructure M) : (⨆ i, (S i).map f).comap f = supr S := (gci_map_comap hf).u_supr_l _ lemma map_le_map_iff_of_injective {S T : L.substructure M} : S.map f ≤ T.map f ↔ S ≤ T := (gci_map_comap hf).l_le_l_iff lemma map_strict_mono_of_injective : strict_mono (map f) := (gci_map_comap hf).strict_mono_l end galois_coinsertion section galois_insertion variables {ι : Type*} {f : M →[L] N} (hf : function.surjective f) include hf /-- `map f` and `comap f` form a `galois_insertion` when `f` is surjective. -/ def gi_map_comap : galois_insertion (map f) (comap f) := (gc_map_comap f).to_galois_insertion (λ S x h, let ⟨y, hy⟩ := hf x in mem_map.2 ⟨y, by simp [hy, h]⟩) lemma map_comap_eq_of_surjective (S : L.substructure N) : (S.comap f).map f = S := (gi_map_comap hf).l_u_eq _ lemma map_surjective_of_surjective : function.surjective (map f) := (gi_map_comap hf).l_surjective lemma comap_injective_of_surjective : function.injective (comap f) := (gi_map_comap hf).u_injective lemma map_inf_comap_of_surjective (S T : L.substructure N) : (S.comap f ⊓ T.comap f).map f = S ⊓ T := (gi_map_comap hf).l_inf_u _ _ lemma map_infi_comap_of_surjective (S : ι → L.substructure N) : (⨅ i, (S i).comap f).map f = infi S := (gi_map_comap hf).l_infi_u _ lemma map_sup_comap_of_surjective (S T : L.substructure N) : (S.comap f ⊔ T.comap f).map f = S ⊔ T := (gi_map_comap hf).l_sup_u _ _ lemma map_supr_comap_of_surjective (S : ι → L.substructure N) : (⨆ i, (S i).comap f).map f = supr S := (gi_map_comap hf).l_supr_u _ lemma comap_le_comap_iff_of_surjective {S T : L.substructure N} : S.comap f ≤ T.comap f ↔ S ≤ T := (gi_map_comap hf).u_le_u_iff lemma comap_strict_mono_of_surjective : strict_mono (comap f) := (gi_map_comap hf).strict_mono_u end galois_insertion instance induced_Structure {S : L.substructure M} : L.Structure S := { fun_map := λ n f x, ⟨fun_map f (λ i, x i), S.fun_mem f (λ i, x i) (λ i, (x i).2)⟩, rel_map := λ n r x, rel_map r (λ i, (x i : M)) } /-- The natural embedding of an `L.substructure` of `M` into `M`. -/ def subtype (S : L.substructure M) : S ↪[L] M := { to_fun := coe, inj' := subtype.coe_injective } @[simp] theorem coe_subtype : ⇑S.subtype = coe := rfl /-- The equivalence between the maximal substructure of a structure and the structure itself. -/ def top_equiv : (⊤ : L.substructure M) ≃[L] M := { to_fun := subtype ⊤, inv_fun := λ m, ⟨m, mem_top m⟩, left_inv := λ m, by simp, right_inv := λ m, rfl } @[simp] lemma coe_top_equiv : ⇑(top_equiv : (⊤ : L.substructure M) ≃[L] M) = coe := rfl /-- A dependent version of `substructure.closure_induction`. -/ @[elab_as_eliminator] lemma closure_induction' (s : set M) {p : Π x, x ∈ closure L s → Prop} (Hs : ∀ x (h : x ∈ s), p x (subset_closure h)) (Hfun : ∀ {n : ℕ} (f : L.functions n), closed_under f {x | ∃ hx, p x hx}) {x} (hx : x ∈ closure L s) : p x hx := begin refine exists.elim _ (λ (hx : x ∈ closure L s) (hc : p x hx), hc), exact closure_induction hx (λ x hx, ⟨subset_closure hx, Hs x hx⟩) @Hfun end end substructure namespace Lhom open substructure variables {L' : language} [L'.Structure M] (φ : L →ᴸ L') [φ.is_expansion_on M] include φ /-- Reduces the language of a substructure along a language hom. -/ def substructure_reduct : L'.substructure M ↪o L.substructure M := { to_fun := λ S, { carrier := S, fun_mem := λ n f x hx, begin have h := S.fun_mem (φ.on_function f) x hx, simp only [Lhom.map_on_function, substructure.mem_carrier] at h, exact h, end }, inj' := λ S T h, begin simp only [set_like.coe_set_eq] at h, exact h, end, map_rel_iff' := λ S T, iff.rfl } @[simp] lemma mem_substructure_reduct {x : M} {S : L'.substructure M} : x ∈ φ.substructure_reduct S ↔ x ∈ S := iff.rfl @[simp] lemma coe_substructure_reduct {S : L'.substructure M} : (φ.substructure_reduct S : set M) = ↑S := rfl end Lhom namespace substructure /-- Turns any substructure containing a constant set `A` into a `L[[A]]`-substructure. -/ def with_constants (S : L.substructure M) {A : set M} (h : A ⊆ S) : L[[A]].substructure M := { carrier := S, fun_mem := λ n f, begin cases f, { exact S.fun_mem f }, { cases n, { exact λ _ _, h f.2 }, { exact is_empty_elim f } } end } variables {A : set M} {s : set M} (h : A ⊆ S) @[simp] lemma mem_with_constants {x : M} : x ∈ S.with_constants h ↔ x ∈ S := iff.rfl @[simp] lemma coe_with_constants : (S.with_constants h : set M) = ↑S := rfl @[simp] lemma reduct_with_constants : (L.Lhom_with_constants A).substructure_reduct (S.with_constants h) = S := by { ext, simp } lemma subset_closure_with_constants : A ⊆ (closure (L[[A]]) s) := begin intros a ha, simp only [set_like.mem_coe], let a' : (L[[A]]).constants := sum.inr ⟨a, ha⟩, exact constants_mem a', end lemma closure_with_constants_eq : (closure (L[[A]]) s) = (closure L (A ∪ s)).with_constants ((A.subset_union_left s).trans subset_closure) := begin refine closure_eq_of_le ((A.subset_union_right s).trans subset_closure) _, rw ← ((L.Lhom_with_constants A).substructure_reduct).le_iff_le, simp only [subset_closure, reduct_with_constants, closure_le, Lhom.coe_substructure_reduct, set.union_subset_iff, and_true], { exact subset_closure_with_constants }, { apply_instance }, { apply_instance }, end end substructure namespace hom open substructure /-- The restriction of a first-order hom to a substructure `s ⊆ M` gives a hom `s → N`. -/ @[simps] def dom_restrict (f : M →[L] N) (p : L.substructure M) : p →[L] N := f.comp p.subtype.to_hom /-- A first-order hom `f : M → N` whose values lie in a substructure `p ⊆ N` can be restricted to a hom `M → p`. -/ @[simps] def cod_restrict (p : L.substructure N) (f : M →[L] N) (h : ∀c, f c ∈ p) : M →[L] p := { to_fun := λc, ⟨f c, h c⟩, map_rel' := λ n R x h, f.map_rel R x h } @[simp] lemma comp_cod_restrict (f : M →[L] N) (g : N →[L] P) (p : L.substructure P) (h : ∀b, g b ∈ p) : ((cod_restrict p g h).comp f : M →[L] p) = cod_restrict p (g.comp f) (assume b, h _) := ext $ assume b, rfl @[simp] lemma subtype_comp_cod_restrict (f : M →[L] N) (p : L.substructure N) (h : ∀b, f b ∈ p) : p.subtype.to_hom.comp (cod_restrict p f h) = f := ext $ assume b, rfl /-- The range of a first-order hom `f : M → N` is a submodule of `N`. See Note [range copy pattern]. -/ def range (f : M →[L] N) : L.substructure N := (map f ⊤).copy (set.range f) set.image_univ.symm theorem range_coe (f : M →[L] N) : (range f : set N) = set.range f := rfl @[simp] theorem mem_range {f : M →[L] N} {x} : x ∈ range f ↔ ∃ y, f y = x := iff.rfl lemma range_eq_map (f : M →[L] N) : f.range = map f ⊤ := by { ext, simp } theorem mem_range_self (f : M →[L] N) (x : M) : f x ∈ f.range := ⟨x, rfl⟩ @[simp] theorem range_id : range (id L M) = ⊤ := set_like.coe_injective set.range_id theorem range_comp (f : M →[L] N) (g : N →[L] P) : range (g.comp f : M →[L] P) = map g (range f) := set_like.coe_injective (set.range_comp g f) theorem range_comp_le_range (f : M →[L] N) (g : N →[L] P) : range (g.comp f : M →[L] P) ≤ range g := set_like.coe_mono (set.range_comp_subset_range f g) theorem range_eq_top {f : M →[L] N} : range f = ⊤ ↔ function.surjective f := by rw [set_like.ext'_iff, range_coe, coe_top, set.range_iff_surjective] lemma range_le_iff_comap {f : M →[L] N} {p : L.substructure N} : range f ≤ p ↔ comap f p = ⊤ := by rw [range_eq_map, map_le_iff_le_comap, eq_top_iff] lemma map_le_range {f : M →[L] N} {p : L.substructure M} : map f p ≤ range f := set_like.coe_mono (set.image_subset_range f p) /-- The substructure of elements `x : M` such that `f x = g x` -/ def eq_locus (f g : M →[L] N) : substructure L M := { carrier := {x : M | f x = g x}, fun_mem := λ n fn x hx, by { have h : f ∘ x = g ∘ x := by { ext, repeat {rw function.comp_apply}, apply hx, }, simp [h], } } /-- If two `L.hom`s are equal on a set, then they are equal on its substructure closure. -/ lemma eq_on_closure {f g : M →[L] N} {s : set M} (h : set.eq_on f g s) : set.eq_on f g (closure L s) := show closure L s ≤ f.eq_locus g, from closure_le.2 h lemma eq_of_eq_on_top {f g : M →[L] N} (h : set.eq_on f g (⊤ : substructure L M)) : f = g := ext $ λ x, h trivial variable {s : set M} lemma eq_of_eq_on_dense (hs : closure L s = ⊤) {f g : M →[L] N} (h : s.eq_on f g) : f = g := eq_of_eq_on_top $ hs ▸ eq_on_closure h end hom namespace embedding open substructure /-- The restriction of a first-order embedding to a substructure `s ⊆ M` gives an embedding `s → N`. -/ def dom_restrict (f : M ↪[L] N) (p : L.substructure M) : p ↪[L] N := f.comp p.subtype @[simp] lemma dom_restrict_apply (f : M ↪[L] N) (p : L.substructure M) (x : p) : f.dom_restrict p x = f x := rfl /-- A first-order embedding `f : M → N` whose values lie in a substructure `p ⊆ N` can be restricted to an embedding `M → p`. -/ def cod_restrict (p : L.substructure N) (f : M ↪[L] N) (h : ∀c, f c ∈ p) : M ↪[L] p := { to_fun := f.to_hom.cod_restrict p h, inj' := λ a b ab, f.injective (subtype.mk_eq_mk.1 ab), map_fun' := λ n F x, (f.to_hom.cod_restrict p h).map_fun' F x, map_rel' := λ n r x, begin simp only, rw [← p.subtype.map_rel, function.comp.assoc], change rel_map r ((hom.comp p.subtype.to_hom (f.to_hom.cod_restrict p h)) ∘ x) ↔ _, rw [hom.subtype_comp_cod_restrict, ← f.map_rel], refl, end } @[simp] theorem cod_restrict_apply (p : L.substructure N) (f : M ↪[L] N) {h} (x : M) : (cod_restrict p f h x : N) = f x := rfl @[simp] lemma comp_cod_restrict (f : M ↪[L] N) (g : N ↪[L] P) (p : L.substructure P) (h : ∀b, g b ∈ p) : ((cod_restrict p g h).comp f : M ↪[L] p) = cod_restrict p (g.comp f) (assume b, h _) := ext $ assume b, rfl @[simp] lemma subtype_comp_cod_restrict (f : M ↪[L] N) (p : L.substructure N) (h : ∀b, f b ∈ p) : p.subtype.comp (cod_restrict p f h) = f := ext $ assume b, rfl /-- The equivalence between a substructure `s` and its image `s.map f.to_hom`, where `f` is an embedding. -/ noncomputable def substructure_equiv_map (f : M ↪[L] N) (s : L.substructure M) : s ≃[L] s.map f.to_hom := { to_fun := cod_restrict (s.map f.to_hom) (f.dom_restrict s) (λ ⟨m, hm⟩, ⟨m, hm, rfl⟩), inv_fun := λ n, ⟨classical.some n.2, (classical.some_spec n.2).1⟩, left_inv := λ ⟨m, hm⟩, subtype.mk_eq_mk.2 (f.injective ((classical.some_spec (cod_restrict (s.map f.to_hom) (f.dom_restrict s) (λ ⟨m, hm⟩, ⟨m, hm, rfl⟩) ⟨m, hm⟩).2).2)), right_inv := λ ⟨n, hn⟩, subtype.mk_eq_mk.2 (classical.some_spec hn).2 } @[simp] lemma substructure_equiv_map_apply (f : M ↪[L] N) (p : L.substructure M) (x : p) : (f.substructure_equiv_map p x : N) = f x := rfl /-- The equivalence between the domain and the range of an embedding `f`. -/ noncomputable def equiv_range (f : M ↪[L] N) : M ≃[L] f.to_hom.range := { to_fun := cod_restrict f.to_hom.range f f.to_hom.mem_range_self, inv_fun := λ n, classical.some n.2, left_inv := λ m, f.injective (classical.some_spec (cod_restrict f.to_hom.range f f.to_hom.mem_range_self m).2), right_inv := λ ⟨n, hn⟩, subtype.mk_eq_mk.2 (classical.some_spec hn) } @[simp] lemma equiv_range_apply (f : M ↪[L] N) (x : M) : (f.equiv_range x : N) = f x := rfl end embedding namespace equiv lemma to_hom_range (f : M ≃[L] N) : f.to_hom.range = ⊤ := begin ext n, simp only [hom.mem_range, coe_to_hom, substructure.mem_top, iff_true], exact ⟨f.symm n, apply_symm_apply _ _⟩ end end equiv namespace substructure /-- The embedding associated to an inclusion of substructures. -/ def inclusion {S T : L.substructure M} (h : S ≤ T) : S ↪[L] T := S.subtype.cod_restrict _ (λ x, h x.2) @[simp] lemma coe_inclusion {S T : L.substructure M} (h : S ≤ T) : (inclusion h : S → T) = set.inclusion h := rfl lemma range_subtype (S : L.substructure M) : S.subtype.to_hom.range = S := begin ext x, simp only [hom.mem_range, embedding.coe_to_hom, coe_subtype], refine ⟨_, λ h, ⟨⟨x, h⟩, rfl⟩⟩, rintros ⟨⟨y, hy⟩, rfl⟩, exact hy, end end substructure end language end first_order