/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import model_theory.elementary_maps /-! # Skolem Functions and Downward Löwenheim–Skolem ## Main Definitions * `first_order.language.skolem₁` is a language consisting of Skolem functions for another language. ## Main Results * `first_order.language.exists_elementary_substructure_card_eq` is the Downward Löwenheim–Skolem theorem: If `s` is a set in an `L`-structure `M` and `κ` an infinite cardinal such that `max (# s, L.card) ≤ κ` and `κ ≤ # M`, then `M` has an elementary substructure containing `s` of cardinality `κ`. ## TODO * Use `skolem₁` recursively to construct an actual Skolemization of a language. -/ universes u v w w' namespace first_order namespace language open Structure cardinal open_locale cardinal variables (L : language.{u v}) {M : Type w} [nonempty M] [L.Structure M] /-- A language consisting of Skolem functions for another language. Called `skolem₁` because it is the first step in building a Skolemization of a language. -/ @[simps] def skolem₁ : language := ⟨λ n, L.bounded_formula empty (n + 1), λ _, empty⟩ variables {L} theorem card_functions_sum_skolem₁ : # (Σ n, (L.sum L.skolem₁).functions n) = # (Σ n, L.bounded_formula empty (n + 1)) := begin simp only [card_functions_sum, skolem₁_functions, lift_id', mk_sigma, sum_add_distrib'], rw [add_comm, add_eq_max, max_eq_left], { refine sum_le_sum _ _ (λ n, _), rw [← lift_le, lift_lift, lift_mk_le], refine ⟨⟨λ f, (func f default).bd_equal (func f default), λ f g h, _⟩⟩, rcases h with ⟨rfl, ⟨rfl⟩⟩, refl }, { rw ← mk_sigma, exact infinite_iff.1 (infinite.of_injective (λ n, ⟨n, ⊥⟩) (λ x y xy, (sigma.mk.inj xy).1)) } end theorem card_functions_sum_skolem₁_le : # (Σ n, (L.sum L.skolem₁).functions n) ≤ max ℵ₀ L.card := begin rw card_functions_sum_skolem₁, transitivity # (Σ n, L.bounded_formula empty n), { exact ⟨⟨sigma.map nat.succ (λ _, id), nat.succ_injective.sigma_map (λ _, function.injective_id)⟩⟩ }, { refine trans bounded_formula.card_le (lift_le.1 _), simp only [mk_empty, lift_zero, lift_uzero, zero_add] } end /-- The structure assigning each function symbol of `L.skolem₁` to a skolem function generated with choice. -/ noncomputable instance skolem₁_Structure : L.skolem₁.Structure M := ⟨λ n φ x, classical.epsilon (λ a, φ.realize default (fin.snoc x a : _ → M)), λ _ r, empty.elim r⟩ namespace substructure lemma skolem₁_reduct_is_elementary (S : (L.sum L.skolem₁).substructure M) : (Lhom.sum_inl.substructure_reduct S).is_elementary := begin apply (Lhom.sum_inl.substructure_reduct S).is_elementary_of_exists, intros n φ x a h, let φ' : (L.sum L.skolem₁).functions n := (Lhom.sum_inr.on_function φ), exact ⟨⟨fun_map φ' (coe ∘ x), S.fun_mem (Lhom.sum_inr.on_function φ) (coe ∘ x) (λ i, (x i).2)⟩, classical.epsilon_spec ⟨a, h⟩⟩, end /-- Any `L.sum L.skolem₁`-substructure is an elementary `L`-substructure. -/ noncomputable def elementary_skolem₁_reduct (S : (L.sum L.skolem₁).substructure M) : L.elementary_substructure M := ⟨Lhom.sum_inl.substructure_reduct S, λ _, S.skolem₁_reduct_is_elementary⟩ lemma coe_sort_elementary_skolem₁_reduct (S : (L.sum L.skolem₁).substructure M) : (S.elementary_skolem₁_reduct : Type w) = S := rfl end substructure open substructure variables (L) (M) instance : small (⊥ : (L.sum L.skolem₁).substructure M).elementary_skolem₁_reduct := begin rw [coe_sort_elementary_skolem₁_reduct], apply_instance, end theorem exists_small_elementary_substructure : ∃ (S : L.elementary_substructure M), small.{max u v} S := ⟨substructure.elementary_skolem₁_reduct ⊥, infer_instance⟩ variables {M} /-- The Downward Löwenheim–Skolem theorem : If `s` is a set in an `L`-structure `M` and `κ` an infinite cardinal such that `max (# s, L.card) ≤ κ` and `κ ≤ # M`, then `M` has an elementary substructure containing `s` of cardinality `κ`. -/ theorem exists_elementary_substructure_card_eq (s : set M) (κ : cardinal.{w'}) (h1 : ℵ₀ ≤ κ) (h2 : cardinal.lift.{w'} (# s) ≤ cardinal.lift.{w} κ) (h3 : cardinal.lift.{w'} L.card ≤ cardinal.lift.{max u v} κ) (h4 : cardinal.lift.{w} κ ≤ cardinal.lift.{w'} (# M)) : ∃ (S : L.elementary_substructure M), s ⊆ S ∧ cardinal.lift.{w'} (# S) = cardinal.lift.{w} κ := begin obtain ⟨s', hs'⟩ := cardinal.le_mk_iff_exists_set.1 h4, rw ← aleph_0_le_lift at h1, rw ← hs' at *, refine ⟨elementary_skolem₁_reduct (closure (L.sum L.skolem₁) (s ∪ (equiv.ulift '' s'))), (s.subset_union_left _).trans subset_closure, _⟩, have h := mk_image_eq_lift _ s' equiv.ulift.injective, rw [lift_umax, lift_id'] at h, rw [coe_sort_elementary_skolem₁_reduct, ← h, lift_inj], refine le_antisymm (lift_le.1 (lift_card_closure_le.trans _)) (mk_le_mk_of_subset ((set.subset_union_right _ _).trans subset_closure)), rw [max_le_iff, aleph_0_le_lift, ← aleph_0_le_lift, h, add_eq_max, max_le_iff, lift_le], refine ⟨h1, (mk_union_le _ _).trans _, (lift_le.2 card_functions_sum_skolem₁_le).trans _⟩, { rw [← lift_le, lift_add, h, add_comm, add_eq_max h1], exact max_le le_rfl h2 }, { rw [lift_max, lift_aleph_0, max_le_iff, aleph_0_le_lift, and_comm, ← lift_le.{_ w'}, lift_lift, lift_lift, ← aleph_0_le_lift, h], refine ⟨_, h1⟩, simp only [← lift_lift, lift_umax, lift_umax'], rw [lift_lift, ← lift_lift.{w' w} L.card], refine trans ((lift_le.{_ w}).2 h3) _, rw [lift_lift, ← lift_lift.{w (max u v)}, ← hs', ← h, lift_lift, lift_lift, lift_lift] }, { refine trans _ (lift_le.2 (mk_le_mk_of_subset (set.subset_union_right _ _))), rw [aleph_0_le_lift, ← aleph_0_le_lift, h], exact h1 } end end language end first_order