/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import model_theory.finitely_generated import model_theory.direct_limit import model_theory.bundled /-! # Fraïssé Classes and Fraïssé Limits This file pertains to the ages of countable first-order structures. The age of a structure is the class of all finitely-generated structures that embed into it. Of particular interest are Fraïssé classes, which are exactly the ages of countable ultrahomogeneous structures. To each is associated a unique (up to nonunique isomorphism) Fraïssé limit - the countable ultrahomogeneous structure with that age. ## Main Definitions * `first_order.language.age` is the class of finitely-generated structures that embed into a particular structure. * A class `K` has the `first_order.language.hereditary` when all finitely-generated structures that embed into structures in `K` are also in `K`. * A class `K` has the `first_order.language.joint_embedding` when for every `M`, `N` in `K`, there is another structure in `K` into which both `M` and `N` embed. * A class `K` has the `first_order.language.amalgamation` when for any pair of embeddings of a structure `M` in `K` into other structures in `K`, those two structures can be embedded into a fourth structure in `K` such that the resulting square of embeddings commutes. * `first_order.language.is_fraisse` indicates that a class is nonempty, isomorphism-invariant, essentially countable, and satisfies the hereditary, joint embedding, and amalgamation properties. * `first_order.language.is_fraisse_limit` indicates that a structure is a Fraïssé limit for a given class. ## Main Results * We show that the age of any structure is isomorphism-invariant and satisfies the hereditary and joint-embedding properties. * `first_order.language.age.countable_quotient` shows that the age of any countable structure is essentially countable. * `first_order.language.exists_countable_is_age_of_iff` gives necessary and sufficient conditions for a class to be the age of a countable structure in a language with countably many functions. ## Implementation Notes * Classes of structures are formalized with `set (bundled L.Structure)`. * Some results pertain to countable limit structures, others to countably-generated limit structures. In the case of a language with countably many function symbols, these are equivalent. ## References - [W. Hodges, *A Shorter Model Theory*][Hodges97] - [K. Tent, M. Ziegler, *A Course in Model Theory*][Tent_Ziegler] ## TODO * Show existence and uniqueness of Fraïssé limits -/ universes u v w w' open_locale first_order open set category_theory namespace first_order namespace language open Structure substructure variables (L : language.{u v}) /-! ### The Age of a Structure and Fraïssé Classes-/ /-- The age of a structure `M` is the class of finitely-generated structures that embed into it. -/ def age (M : Type w) [L.Structure M] : set (bundled.{w} L.Structure) := { N | Structure.fg L N ∧ nonempty (N ↪[L] M) } variables {L} (K : set (bundled.{w} L.Structure)) /-- A class `K` has the hereditary property when all finitely-generated structures that embed into structures in `K` are also in `K`. -/ def hereditary : Prop := ∀ (M : bundled.{w} L.Structure), M ∈ K → L.age M ⊆ K /-- A class `K` has the joint embedding property when for every `M`, `N` in `K`, there is another structure in `K` into which both `M` and `N` embed. -/ def joint_embedding : Prop := directed_on (λ M N : bundled.{w} L.Structure, nonempty (M ↪[L] N)) K /-- A class `K` has the amalgamation property when for any pair of embeddings of a structure `M` in `K` into other structures in `K`, those two structures can be embedded into a fourth structure in `K` such that the resulting square of embeddings commutes. -/ def amalgamation : Prop := ∀ (M N P : bundled.{w} L.Structure) (MN : M ↪[L] N) (MP : M ↪[L] P), M ∈ K → N ∈ K → P ∈ K → ∃ (Q : bundled.{w} L.Structure) (NQ : N ↪[L] Q) (PQ : P ↪[L] Q), Q ∈ K ∧ NQ.comp MN = PQ.comp MP /-- A Fraïssé class is a nonempty, isomorphism-invariant, essentially countable class of structures satisfying the hereditary, joint embedding, and amalgamation properties. -/ class is_fraisse : Prop := (is_nonempty : K.nonempty) (fg : ∀ M : bundled.{w} L.Structure, M ∈ K → Structure.fg L M) (is_equiv_invariant : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) (is_essentially_countable : (quotient.mk '' K).countable) (hereditary : hereditary K) (joint_embedding : joint_embedding K) (amalgamation : amalgamation K) variables {K} (L) (M : Type w) [L.Structure M] lemma age.is_equiv_invariant (N P : bundled.{w} L.Structure) (h : nonempty (N ≃[L] P)) : N ∈ L.age M ↔ P ∈ L.age M := and_congr h.some.fg_iff ⟨nonempty.map (λ x, embedding.comp x h.some.symm.to_embedding), nonempty.map (λ x, embedding.comp x h.some.to_embedding)⟩ variables {L} {M} {N : Type w} [L.Structure N] lemma embedding.age_subset_age (MN : M ↪[L] N) : L.age M ⊆ L.age N := λ _, and.imp_right (nonempty.map MN.comp) lemma equiv.age_eq_age (MN : M ≃[L] N) : L.age M = L.age N := le_antisymm MN.to_embedding.age_subset_age MN.symm.to_embedding.age_subset_age lemma Structure.fg.mem_age_of_equiv {M N : bundled L.Structure} (h : Structure.fg L M) (MN : nonempty (M ≃[L] N)) : N ∈ L.age M := ⟨MN.some.fg_iff.1 h, ⟨MN.some.symm.to_embedding⟩⟩ lemma hereditary.is_equiv_invariant_of_fg (h : hereditary K) (fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) (M N : bundled.{w} L.Structure) (hn : nonempty (M ≃[L] N)) : M ∈ K ↔ N ∈ K := ⟨λ MK, h M MK ((fg M MK).mem_age_of_equiv hn), λ NK, h N NK ((fg N NK).mem_age_of_equiv ⟨hn.some.symm⟩)⟩ variable (M) lemma age.nonempty : (L.age M).nonempty := ⟨bundled.of (substructure.closure L (∅ : set M)), (fg_iff_Structure_fg _).1 (fg_closure set.finite_empty), ⟨substructure.subtype _⟩⟩ lemma age.hereditary : hereditary (L.age M) := λ N hN P hP, hN.2.some.age_subset_age hP lemma age.joint_embedding : joint_embedding (L.age M) := λ N hN P hP, ⟨bundled.of ↥(hN.2.some.to_hom.range ⊔ hP.2.some.to_hom.range), ⟨(fg_iff_Structure_fg _).1 ((hN.1.range hN.2.some.to_hom).sup (hP.1.range hP.2.some.to_hom)), ⟨subtype _⟩⟩, ⟨embedding.comp (inclusion le_sup_left) hN.2.some.equiv_range.to_embedding⟩, ⟨embedding.comp (inclusion le_sup_right) hP.2.some.equiv_range.to_embedding⟩⟩ /-- The age of a countable structure is essentially countable (has countably many isomorphism classes). -/ lemma age.countable_quotient (h : (univ : set M).countable) : (quotient.mk '' (L.age M)).countable := begin refine eq.mp (congr rfl (set.ext _)) ((countable_set_of_finite_subset h).image (λ s, ⟦⟨closure L s, infer_instance⟩⟧)), rw forall_quotient_iff, intro N, simp only [subset_univ, and_true, mem_image, mem_set_of_eq, quotient.eq], split, { rintro ⟨s, hs1, hs2⟩, use bundled.of ↥(closure L s), exact ⟨⟨(fg_iff_Structure_fg _).1 (fg_closure hs1), ⟨subtype _⟩⟩, hs2⟩ }, { rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩, refine ⟨PM '' s, set.finite.image PM s.finite_to_set, setoid.trans _ hP2⟩, rw [← embedding.coe_to_hom, closure_image PM.to_hom, hs, ← hom.range_eq_map], exact ⟨PM.equiv_range.symm⟩ } end /-- The age of a direct limit of structures is the union of the ages of the structures. -/ @[simp] theorem age_direct_limit {ι : Type w} [preorder ι] [is_directed ι (≤)] [nonempty ι] (G : ι → Type (max w w')) [Π i, L.Structure (G i)] (f : Π i j, i ≤ j → G i ↪[L] G j) [directed_system G (λ i j h, f i j h)] : L.age (direct_limit G f) = ⋃ (i : ι), L.age (G i) := begin classical, ext M, simp only [mem_Union], split, { rintro ⟨Mfg, ⟨e⟩⟩, obtain ⟨s, hs⟩ := Mfg.range e.to_hom, let out := @quotient.out _ (direct_limit.setoid G f), obtain ⟨i, hi⟩ := finset.exists_le (s.image (sigma.fst ∘ out)), have e' := ((direct_limit.of L ι G f i).equiv_range.symm.to_embedding), refine ⟨i, Mfg, ⟨e'.comp ((substructure.inclusion _).comp e.equiv_range.to_embedding)⟩⟩, rw [← hs, closure_le], intros x hx, refine ⟨f (out x).1 i (hi (out x).1 (finset.mem_image_of_mem _ hx)) (out x).2, _⟩, rw [embedding.coe_to_hom, direct_limit.of_apply, quotient.mk_eq_iff_out, direct_limit.equiv_iff G f _ (hi (out x).1 (finset.mem_image_of_mem _ hx)), directed_system.map_self], refl }, { rintro ⟨i, Mfg, ⟨e⟩⟩, exact ⟨Mfg, ⟨embedding.comp (direct_limit.of L ι G f i) e⟩⟩ } end /-- Sufficient conditions for a class to be the age of a countably-generated structure. -/ theorem exists_cg_is_age_of (hn : K.nonempty) (h : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) (hc : (quotient.mk '' K).countable) (fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) (hp : hereditary K) (jep : joint_embedding K) : ∃ (M : bundled.{w} L.Structure), Structure.cg L M ∧ L.age M = K := begin obtain ⟨F, hF⟩ := hc.exists_eq_range (hn.image _), simp only [set.ext_iff, forall_quotient_iff, mem_image, mem_range, quotient.eq] at hF, simp_rw [quotient.eq_mk_iff_out] at hF, have hF' : ∀ n : ℕ, (F n).out ∈ K, { intro n, obtain ⟨P, hP1, hP2⟩ := (hF (F n).out).2 ⟨n, setoid.refl _⟩, exact (h _ _ hP2).1 hP1 }, choose P hPK hP hFP using (λ (N : K) (n : ℕ), jep N N.2 (F (n + 1)).out (hF' _)), let G : ℕ → K := @nat.rec (λ _, K) (⟨(F 0).out, hF' 0⟩) (λ n N, ⟨P N n, hPK N n⟩), let f : Π (i j), i ≤ j → G i ↪[L] G j := directed_system.nat_le_rec (λ n, (hP _ n).some), refine ⟨bundled.of (direct_limit (λ n, G n) f), direct_limit.cg _ (λ n, (fg _ (G n).2).cg), (age_direct_limit _ _).trans (subset_antisymm (Union_subset (λ n N hN, hp (G n) (G n).2 hN)) (λ N KN, _))⟩, obtain ⟨n, ⟨e⟩⟩ := (hF N).1 ⟨N, KN, setoid.refl _⟩, refine mem_Union_of_mem n ⟨fg _ KN, ⟨embedding.comp _ e.symm.to_embedding⟩⟩, cases n, { exact embedding.refl _ _ }, { exact (hFP _ n).some } end theorem exists_countable_is_age_of_iff [L.countable_functions] : (∃ (M : bundled.{w} L.Structure), (univ : set M).countable ∧ L.age M = K) ↔ K.nonempty ∧ (∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) ∧ (quotient.mk '' K).countable ∧ (∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) ∧ hereditary K ∧ joint_embedding K := begin split, { rintros ⟨M, h1, h2, rfl⟩, resetI, refine ⟨age.nonempty M, age.is_equiv_invariant L M, age.countable_quotient M h1, λ N hN, hN.1, age.hereditary M, age.joint_embedding M⟩, }, { rintros ⟨Kn, eqinv, cq, hfg, hp, jep⟩, obtain ⟨M, hM, rfl⟩ := exists_cg_is_age_of Kn eqinv cq hfg hp jep, haveI := ((Structure.cg_iff_countable).1 hM).some, refine ⟨M, to_countable _, rfl⟩, } end variables {K} (L) (M) /-- A structure `M` is ultrahomogeneous if every embedding of a finitely generated substructure into `M` extends to an automorphism of `M`. -/ def is_ultrahomogeneous : Prop := ∀ (S : L.substructure M) (hs : S.fg) (f : S ↪[L] M), ∃ (g : M ≃[L] M), f = g.to_embedding.comp S.subtype variables {L} (K) /-- A structure `M` is a Fraïssé limit for a class `K` if it is countably generated, ultrahomogeneous, and has age `K`. -/ structure is_fraisse_limit [countable_functions L] : Prop := (ultrahomogeneous : is_ultrahomogeneous L M) (countable : (univ : set M).countable) (age : L.age M = K) variables {L} {M} lemma is_ultrahomogeneous.amalgamation_age (h : L.is_ultrahomogeneous M) : amalgamation (L.age M) := begin rintros N P Q NP NQ ⟨Nfg, ⟨NM⟩⟩ ⟨Pfg, ⟨PM⟩⟩ ⟨Qfg, ⟨QM⟩⟩, obtain ⟨g, hg⟩ := h ((PM.comp NP).to_hom.range) (Nfg.range _) ((QM.comp NQ).comp (PM.comp NP).equiv_range.symm.to_embedding), let s := (g.to_hom.comp PM.to_hom).range ⊔ QM.to_hom.range, refine ⟨bundled.of s, embedding.comp (substructure.inclusion le_sup_left) ((g.to_embedding.comp PM).equiv_range).to_embedding, embedding.comp (substructure.inclusion le_sup_right) QM.equiv_range.to_embedding, ⟨(fg_iff_Structure_fg _).1 (fg.sup (Pfg.range _) (Qfg.range _)), ⟨substructure.subtype _⟩⟩, _⟩, ext n, have hgn := (embedding.ext_iff.1 hg) ((PM.comp NP).equiv_range n), simp only [embedding.comp_apply, equiv.coe_to_embedding, equiv.symm_apply_apply, substructure.coe_subtype, embedding.equiv_range_apply] at hgn, simp only [embedding.comp_apply, equiv.coe_to_embedding, substructure.coe_inclusion, set.coe_inclusion, embedding.equiv_range_apply, hgn], end lemma is_ultrahomogeneous.age_is_fraisse (hc : (univ : set M).countable) (h : L.is_ultrahomogeneous M) : is_fraisse (L.age M) := ⟨age.nonempty M, λ _ hN, hN.1, age.is_equiv_invariant L M, age.countable_quotient M hc, age.hereditary M, age.joint_embedding M, h.amalgamation_age⟩ namespace is_fraisse_limit /-- If a class has a Fraïssé limit, it must be Fraïssé. -/ theorem is_fraisse [countable_functions L] (h : is_fraisse_limit K M) : is_fraisse K := (congr rfl h.age).mp (h.ultrahomogeneous.age_is_fraisse h.countable) end is_fraisse_limit end language end first_order