/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import data.fintype.basic import model_theory.substructures /-! # Elementary Maps Between First-Order Structures ## Main Definitions * A `first_order.language.elementary_embedding` is an embedding that commutes with the realizations of formulas. * A `first_order.language.elementary_substructure` is a substructure where the realization of each formula agrees with the realization in the larger model. * The `first_order.language.elementary_diagram` of a structure is the set of all sentences with parameters that the structure satisfies. * `first_order.language.elementary_embedding.of_models_elementary_diagram` is the canonical elementary embedding of any structure into a model of its elementary diagram. ## Main Results * The Tarski-Vaught Test for embeddings: `first_order.language.embedding.is_elementary_of_exists` gives a simple criterion for an embedding to be elementary. * The Tarski-Vaught Test for substructures: `first_order.language.embedding.is_elementary_of_exists` gives a simple criterion for a substructure to be elementary. -/ open_locale first_order namespace first_order namespace language open Structure variables (L : language) (M : Type*) (N : Type*) {P : Type*} {Q : Type*} variables [L.Structure M] [L.Structure N] [L.Structure P] [L.Structure Q] /-- An elementary embedding of first-order structures is an embedding that commutes with the realizations of formulas. -/ structure elementary_embedding := (to_fun : M → N) (map_formula' : ∀{n} (φ : L.formula (fin n)) (x : fin n → M), φ.realize (to_fun ∘ x) ↔ φ.realize x . obviously) localized "notation A ` ↪ₑ[`:25 L `] ` B := first_order.language.elementary_embedding L A B" in first_order variables {L} {M} {N} namespace elementary_embedding instance fun_like : fun_like (M ↪ₑ[L] N) M (λ _, N) := { coe := λ f, f.to_fun, coe_injective' := λ f g h, begin cases f, cases g, simp only, ext x, exact function.funext_iff.1 h x end } instance : has_coe_to_fun (M ↪ₑ[L] N) (λ _, M → N) := fun_like.has_coe_to_fun @[simp] lemma map_bounded_formula (f : M ↪ₑ[L] N) {α : Type} {n : ℕ} (φ : L.bounded_formula α n) (v : α → M) (xs : fin n → M) : φ.realize (f ∘ v) (f ∘ xs) ↔ φ.realize v xs := begin classical, rw [← bounded_formula.realize_restrict_free_var set.subset.rfl, set.inclusion_eq_id, iff_eq_eq], swap, { apply_instance }, have h := f.map_formula' ((φ.restrict_free_var id).to_formula.relabel (fintype.equiv_fin _)) ((sum.elim (v ∘ coe) xs) ∘ (fintype.equiv_fin _).symm), simp only [formula.realize_relabel, bounded_formula.realize_to_formula, iff_eq_eq] at h, rw [← function.comp.assoc _ _ ((fintype.equiv_fin _).symm), function.comp.assoc _ ((fintype.equiv_fin _).symm) (fintype.equiv_fin _), equiv.symm_comp_self, function.comp.right_id, function.comp.assoc, sum.elim_comp_inl, function.comp.assoc _ _ sum.inr, sum.elim_comp_inr, ← function.comp.assoc] at h, refine h.trans _, rw [function.comp.assoc _ _ (fintype.equiv_fin _), equiv.symm_comp_self, function.comp.right_id, sum.elim_comp_inl, sum.elim_comp_inr, ← set.inclusion_eq_id, bounded_formula.realize_restrict_free_var set.subset.rfl], end @[simp] lemma map_formula (f : M ↪ₑ[L] N) {α : Type} (φ : L.formula α) (x : α → M) : φ.realize (f ∘ x) ↔ φ.realize x := by rw [formula.realize, formula.realize, ← f.map_bounded_formula, unique.eq_default (f ∘ default)] lemma map_sentence (f : M ↪ₑ[L] N) (φ : L.sentence) : M ⊨ φ ↔ N ⊨ φ := by rw [sentence.realize, sentence.realize, ← f.map_formula, unique.eq_default (f ∘ default)] lemma Theory_model_iff (f : M ↪ₑ[L] N) (T : L.Theory) : M ⊨ T ↔ N ⊨ T := by simp only [Theory.model_iff, f.map_sentence] lemma elementarily_equivalent (f : M ↪ₑ[L] N) : M ≅[L] N := elementarily_equivalent_iff.2 f.map_sentence @[simp] lemma injective (φ : M ↪ₑ[L] N) : function.injective φ := begin intros x y, have h := φ.map_formula ((var 0).equal (var 1) : L.formula (fin 2)) (λ i, if i = 0 then x else y), rw [formula.realize_equal, formula.realize_equal] at h, simp only [nat.one_ne_zero, term.realize, fin.one_eq_zero_iff, if_true, eq_self_iff_true, function.comp_app, if_false] at h, exact h.1, end instance embedding_like : embedding_like (M ↪ₑ[L] N) M N := { injective' := injective } @[simp] lemma map_fun (φ : M ↪ₑ[L] N) {n : ℕ} (f : L.functions n) (x : fin n → M) : φ (fun_map f x) = fun_map f (φ ∘ x) := begin have h := φ.map_formula (formula.graph f) (fin.cons (fun_map f x) x), rw [formula.realize_graph, fin.comp_cons, formula.realize_graph] at h, rw [eq_comm, h] end @[simp] lemma map_rel (φ : M ↪ₑ[L] N) {n : ℕ} (r : L.relations n) (x : fin n → M) : rel_map r (φ ∘ x) ↔ rel_map r x := begin have h := φ.map_formula (r.formula var) x, exact h end instance strong_hom_class : strong_hom_class L (M ↪ₑ[L] N) M N := { map_fun := map_fun, map_rel := map_rel } @[simp] lemma map_constants (φ : M ↪ₑ[L] N) (c : L.constants) : φ c = c := hom_class.map_constants φ c /-- An elementary embedding is also a first-order embedding. -/ def to_embedding (f : M ↪ₑ[L] N) : M ↪[L] N := { to_fun := f, inj' := f.injective, } /-- An elementary embedding is also a first-order homomorphism. -/ def to_hom (f : M ↪ₑ[L] N) : M →[L] N := { to_fun := f } @[simp] lemma to_embedding_to_hom (f : M ↪ₑ[L] N) : f.to_embedding.to_hom = f.to_hom := rfl @[simp] lemma coe_to_hom {f : M ↪ₑ[L] N} : (f.to_hom : M → N) = (f : M → N) := rfl @[simp] lemma coe_to_embedding (f : M ↪ₑ[L] N) : (f.to_embedding : M → N) = (f : M → N) := rfl lemma coe_injective : @function.injective (M ↪ₑ[L] N) (M → N) coe_fn := fun_like.coe_injective @[ext] lemma ext ⦃f g : M ↪ₑ[L] N⦄ (h : ∀ x, f x = g x) : f = g := fun_like.ext f g h lemma ext_iff {f g : M ↪ₑ[L] N} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff variables (L) (M) /-- The identity elementary embedding from a structure to itself -/ @[refl] def refl : M ↪ₑ[L] M := { to_fun := id } variables {L} {M} instance : inhabited (M ↪ₑ[L] M) := ⟨refl L M⟩ @[simp] lemma refl_apply (x : M) : refl L M x = x := rfl /-- Composition of elementary embeddings -/ @[trans] def comp (hnp : N ↪ₑ[L] P) (hmn : M ↪ₑ[L] N) : M ↪ₑ[L] P := { to_fun := hnp ∘ hmn } @[simp] lemma comp_apply (g : N ↪ₑ[L] P) (f : M ↪ₑ[L] N) (x : M) : g.comp f x = g (f x) := rfl /-- Composition of elementary embeddings is associative. -/ lemma comp_assoc (f : M ↪ₑ[L] N) (g : N ↪ₑ[L] P) (h : P ↪ₑ[L] Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl end elementary_embedding variables (L) (M) /-- The elementary diagram of an `L`-structure is the set of all sentences with parameters it satisfies. -/ abbreviation elementary_diagram : L[[M]].Theory := L[[M]].complete_theory M /-- The canonical elementary embedding of an `L`-structure into any model of its elementary diagram -/ @[simps] def elementary_embedding.of_models_elementary_diagram (N : Type*) [L.Structure N] [L[[M]].Structure N] [(Lhom_with_constants L M).is_expansion_on N] [N ⊨ L.elementary_diagram M] : M ↪ₑ[L] N := ⟨(coe : L[[M]].constants → N) ∘ sum.inr, λ n φ x, begin refine trans _ ((realize_iff_of_model_complete_theory M N (((L.Lhom_with_constants M).on_bounded_formula φ).subst (constants.term ∘ sum.inr ∘ x)).alls).trans _), { simp_rw [sentence.realize, bounded_formula.realize_alls, bounded_formula.realize_subst, Lhom.realize_on_bounded_formula, formula.realize, unique.forall_iff, realize_constants] }, { simp_rw [sentence.realize, bounded_formula.realize_alls, bounded_formula.realize_subst, Lhom.realize_on_bounded_formula, formula.realize, unique.forall_iff], refl } end⟩ variables {L M} namespace embedding /-- The Tarski-Vaught test for elementarity of an embedding. -/ theorem is_elementary_of_exists (f : M ↪[L] N) (htv : ∀ (n : ℕ) (φ : L.bounded_formula empty (n + 1)) (x : fin n → M) (a : N), φ.realize default (fin.snoc (f ∘ x) a : _ → N) → ∃ b : M, φ.realize default (fin.snoc (f ∘ x) (f b) : _ → N)) : ∀{n} (φ : L.formula (fin n)) (x : fin n → M), φ.realize (f ∘ x) ↔ φ.realize x := begin suffices h : ∀ (n : ℕ) (φ : L.bounded_formula empty n) (xs : fin n → M), φ.realize (f ∘ default) (f ∘ xs) ↔ φ.realize default xs, { intros n φ x, refine φ.realize_relabel_sum_inr.symm.trans (trans (h n _ _) φ.realize_relabel_sum_inr), }, refine λ n φ, φ.rec_on _ _ _ _ _, { exact λ _ _, iff.rfl }, { intros, simp [bounded_formula.realize, ← sum.comp_elim, embedding.realize_term] }, { intros, simp [bounded_formula.realize, ← sum.comp_elim, embedding.realize_term] }, { intros _ _ _ ih1 ih2 _, simp [ih1, ih2] }, { intros n φ ih xs, simp only [bounded_formula.realize_all], refine ⟨λ h a, _, _⟩, { rw [← ih, fin.comp_snoc], exact h (f a) }, { contrapose!, rintro ⟨a, ha⟩, obtain ⟨b, hb⟩ := htv n φ.not xs a _, { refine ⟨b, λ h, hb (eq.mp _ ((ih _).2 h))⟩, rw [unique.eq_default (f ∘ default), fin.comp_snoc], }, { rw [bounded_formula.realize_not, ← unique.eq_default (f ∘ default)], exact ha } } }, end /-- Bundles an embedding satisfying the Tarski-Vaught test as an elementary embedding. -/ @[simps] def to_elementary_embedding (f : M ↪[L] N) (htv : ∀ (n : ℕ) (φ : L.bounded_formula empty (n + 1)) (x : fin n → M) (a : N), φ.realize default (fin.snoc (f ∘ x) a : _ → N) → ∃ b : M, φ.realize default (fin.snoc (f ∘ x) (f b) : _ → N)) : M ↪ₑ[L] N := ⟨f, λ _, f.is_elementary_of_exists htv⟩ end embedding namespace equiv /-- A first-order equivalence is also an elementary embedding. -/ def to_elementary_embedding (f : M ≃[L] N) : M ↪ₑ[L] N := { to_fun := f } @[simp] lemma to_elementary_embedding_to_embedding (f : M ≃[L] N) : f.to_elementary_embedding.to_embedding = f.to_embedding := rfl @[simp] lemma coe_to_elementary_embedding (f : M ≃[L] N) : (f.to_elementary_embedding : M → N) = (f : M → N) := rfl end equiv @[simp] lemma realize_term_substructure {α : Type*} {S : L.substructure M} (v : α → S) (t : L.term α) : t.realize (coe ∘ v) = (↑(t.realize v) : M) := S.subtype.realize_term t namespace substructure @[simp] lemma realize_bounded_formula_top {α : Type*} {n : ℕ} {φ : L.bounded_formula α n} {v : α → (⊤ : L.substructure M)} {xs : fin n → (⊤ : L.substructure M)} : φ.realize v xs ↔ φ.realize ((coe : _ → M) ∘ v) (coe ∘ xs) := begin rw ← substructure.top_equiv.realize_bounded_formula φ, simp, end @[simp] lemma realize_formula_top {α : Type*} {φ : L.formula α} {v : α → (⊤ : L.substructure M)} : φ.realize v ↔ φ.realize ((coe : (⊤ : L.substructure M) → M) ∘ v) := begin rw ← substructure.top_equiv.realize_formula φ, simp, end /-- A substructure is elementary when every formula applied to a tuple in the subtructure agrees with its value in the overall structure. -/ def is_elementary (S : L.substructure M) : Prop := ∀{n} (φ : L.formula (fin n)) (x : fin n → S), φ.realize ((coe : _ → M) ∘ x) ↔ φ.realize x end substructure variables (L) (M) /-- An elementary substructure is one in which every formula applied to a tuple in the subtructure agrees with its value in the overall structure. -/ structure elementary_substructure := (to_substructure : L.substructure M) (is_elementary' : to_substructure.is_elementary) variables {L} {M} namespace elementary_substructure instance : has_coe (L.elementary_substructure M) (L.substructure M) := ⟨elementary_substructure.to_substructure⟩ instance : set_like (L.elementary_substructure M) M := ⟨λ x, x.to_substructure.carrier, λ ⟨⟨s, hs1⟩, hs2⟩ ⟨⟨t, ht1⟩, ht2⟩ h, begin congr, exact h, end⟩ instance induced_Structure (S : L.elementary_substructure M) : L.Structure S := substructure.induced_Structure @[simp] lemma is_elementary (S : L.elementary_substructure M) : (S : L.substructure M).is_elementary := S.is_elementary' /-- The natural embedding of an `L.substructure` of `M` into `M`. -/ def subtype (S : L.elementary_substructure M) : S ↪ₑ[L] M := { to_fun := coe, map_formula' := λ n, S.is_elementary } @[simp] theorem coe_subtype {S : L.elementary_substructure M} : ⇑S.subtype = coe := rfl /-- The substructure `M` of the structure `M` is elementary. -/ instance : has_top (L.elementary_substructure M) := ⟨⟨⊤, λ n φ x, substructure.realize_formula_top.symm⟩⟩ instance : inhabited (L.elementary_substructure M) := ⟨⊤⟩ @[simp] lemma mem_top (x : M) : x ∈ (⊤ : L.elementary_substructure M) := set.mem_univ x @[simp] lemma coe_top : ((⊤ : L.elementary_substructure M) : set M) = set.univ := rfl @[simp] lemma realize_sentence (S : L.elementary_substructure M) (φ : L.sentence) : S ⊨ φ ↔ M ⊨ φ := S.subtype.map_sentence φ @[simp] lemma Theory_model_iff (S : L.elementary_substructure M) (T : L.Theory) : S ⊨ T ↔ M ⊨ T := by simp only [Theory.model_iff, realize_sentence] instance Theory_model {T : L.Theory} [h : M ⊨ T] {S : L.elementary_substructure M} : S ⊨ T := (Theory_model_iff S T).2 h instance [h : nonempty M] {S : L.elementary_substructure M} : nonempty S := (model_nonempty_theory_iff L).1 infer_instance lemma elementarily_equivalent (S : L.elementary_substructure M) : S ≅[L] M := S.subtype.elementarily_equivalent end elementary_substructure namespace substructure /-- The Tarski-Vaught test for elementarity of a substructure. -/ theorem is_elementary_of_exists (S : L.substructure M) (htv : ∀ (n : ℕ) (φ : L.bounded_formula empty (n + 1)) (x : fin n → S) (a : M), φ.realize default (fin.snoc (coe ∘ x) a : _ → M) → ∃ b : S, φ.realize default (fin.snoc (coe ∘ x) b : _ → M)) : S.is_elementary := λ n, S.subtype.is_elementary_of_exists htv /-- Bundles a substructure satisfying the Tarski-Vaught test as an elementary substructure. -/ @[simps] def to_elementary_substructure (S : L.substructure M) (htv : ∀ (n : ℕ) (φ : L.bounded_formula empty (n + 1)) (x : fin n → S) (a : M), φ.realize default (fin.snoc (coe ∘ x) a : _ → M) → ∃ b : S, φ.realize default (fin.snoc (coe ∘ x) b : _ → M)) : L.elementary_substructure M := ⟨S, λ _, S.is_elementary_of_exists htv⟩ end substructure end language end first_order