/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import data.fintype.order import algebra.direct_limit import model_theory.quotients import model_theory.finitely_generated /-! # Direct Limits of First-Order Structures This file constructs the direct limit of a directed system of first-order embeddings. ## Main Definitions * `first_order.language.direct_limit G f` is the direct limit of the directed system `f` of first-order embeddings between the structures indexed by `G`. -/ universes v w u₁ u₂ open_locale first_order namespace first_order namespace language open Structure set variables {L : language} {ι : Type v} [preorder ι] variables {G : ι → Type w} [Π i, L.Structure (G i)] variables (f : Π i j, i ≤ j → G i ↪[L] G j) namespace directed_system /-- A copy of `directed_system.map_self` specialized to `L`-embeddings, as otherwise the `λ i j h, f i j h` can confuse the simplifier. -/ lemma map_self [directed_system G (λ i j h, f i j h)] (i x h) : f i i h x = x := directed_system.map_self (λ i j h, f i j h) i x h /-- A copy of `directed_system.map_map` specialized to `L`-embeddings, as otherwise the `λ i j h, f i j h` can confuse the simplifier. -/ lemma map_map [directed_system G (λ i j h, f i j h)] {i j k} (hij hjk x) : f j k hjk (f i j hij x) = f i k (le_trans hij hjk) x := directed_system.map_map (λ i j h, f i j h) hij hjk x variables {G' : ℕ → Type w} [Π i, L.Structure (G' i)] (f' : Π (n : ℕ), G' n ↪[L] G' (n + 1)) /-- Given a chain of embeddings of structures indexed by `ℕ`, defines a `directed_system` by composing them. -/ def nat_le_rec (m n : ℕ) (h : m ≤ n) : G' m ↪[L] G' n := nat.le_rec_on h (λ k g, (f' k).comp g) (embedding.refl L _) @[simp] lemma coe_nat_le_rec (m n : ℕ) (h : m ≤ n) : (nat_le_rec f' m n h : G' m → G' n) = nat.le_rec_on h (λ n, f' n) := begin obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_le h, ext x, induction k with k ih, { rw [nat_le_rec, nat.le_rec_on_self, embedding.refl_apply, nat.le_rec_on_self] }, { rw [nat.le_rec_on_succ le_self_add, nat_le_rec, nat.le_rec_on_succ le_self_add, ← nat_le_rec, embedding.comp_apply, ih] } end instance nat_le_rec.directed_system : directed_system G' (λ i j h, nat_le_rec f' i j h) := ⟨λ i x h, congr (congr rfl (nat.le_rec_on_self _)) rfl, λ i j k ij jk, by simp [nat.le_rec_on_trans ij jk]⟩ end directed_system namespace direct_limit /-- Raises a family of elements in the `Σ`-type to the same level along the embeddings. -/ def unify {α : Type*} (x : α → (Σ i, G i)) (i : ι) (h : i ∈ upper_bounds (range (sigma.fst ∘ x))) (a : α) : G i := f (x a).1 i (h (mem_range_self a)) (x a).2 variable [directed_system G (λ i j h, f i j h)] @[simp] lemma unify_sigma_mk_self {α : Type*} {i : ι} {x : α → G i} : unify f (sigma.mk i ∘ x) i (λ j ⟨a, hj⟩, trans (le_of_eq hj.symm) (refl _)) = x := begin ext a, simp only [unify, directed_system.map_self], end lemma comp_unify {α : Type*} {x : α → (Σ i, G i)} {i j : ι} (ij : i ≤ j) (h : i ∈ upper_bounds (range (sigma.fst ∘ x))) : (f i j ij) ∘ (unify f x i h) = unify f x j (λ k hk, trans (mem_upper_bounds.1 h k hk) ij) := begin ext a, simp [unify, directed_system.map_map], end end direct_limit variables (G) namespace direct_limit /-- The directed limit glues together the structures along the embeddings. -/ def setoid [directed_system G (λ i j h, f i j h)] [is_directed ι (≤)] : setoid (Σ i, G i) := { r := λ ⟨i, x⟩ ⟨j, y⟩, ∃ (k : ι) (ik : i ≤ k) (jk : j ≤ k), f i k ik x = f j k jk y, iseqv := ⟨λ ⟨i, x⟩, ⟨i, refl i, refl i, rfl⟩, λ ⟨i, x⟩ ⟨j, y⟩ ⟨k, ik, jk, h⟩, ⟨k, jk, ik, h.symm⟩, λ ⟨i, x⟩ ⟨j, y⟩ ⟨k, z⟩ ⟨ij, hiij, hjij, hij⟩ ⟨jk, hjjk, hkjk, hjk⟩, begin obtain ⟨ijk, hijijk, hjkijk⟩ := (directed_of (≤) ij jk), refine ⟨ijk, le_trans hiij hijijk, le_trans hkjk hjkijk, _⟩, rw [← directed_system.map_map, hij, directed_system.map_map], symmetry, rw [← directed_system.map_map, ← hjk, directed_system.map_map], end ⟩ } /-- The structure on the `Σ`-type which becomes the structure on the direct limit after quotienting. -/ noncomputable def sigma_structure [is_directed ι (≤)] [nonempty ι] : L.Structure (Σ i, G i) := { fun_map := λ n F x, ⟨_, fun_map F (unify f x (classical.some (fintype.bdd_above_range (λ a, (x a).1))) (classical.some_spec (fintype.bdd_above_range (λ a, (x a).1))))⟩, rel_map := λ n R x, rel_map R (unify f x (classical.some (fintype.bdd_above_range (λ a, (x a).1))) (classical.some_spec (fintype.bdd_above_range (λ a, (x a).1)))) } end direct_limit /-- The direct limit of a directed system is the structures glued together along the embeddings. -/ def direct_limit [directed_system G (λ i j h, f i j h)] [is_directed ι (≤)] := quotient (direct_limit.setoid G f) local attribute [instance] direct_limit.setoid instance [directed_system G (λ i j h, f i j h)] [is_directed ι (≤)] [inhabited ι] [inhabited (G default)] : inhabited (direct_limit G f) := ⟨⟦⟨default, default⟩⟧⟩ namespace direct_limit variables [is_directed ι (≤)] [directed_system G (λ i j h, f i j h)] lemma equiv_iff {x y : Σ i, G i} {i : ι} (hx : x.1 ≤ i) (hy : y.1 ≤ i) : x ≈ y ↔ (f x.1 i hx) x.2 = (f y.1 i hy) y.2 := begin cases x, cases y, refine ⟨λ xy, _, λ xy, ⟨i, hx, hy, xy⟩⟩, obtain ⟨j, _, _, h⟩ := xy, obtain ⟨k, ik, jk⟩ := directed_of (≤) i j, have h := congr_arg (f j k jk) h, apply (f i k ik).injective, rw [directed_system.map_map, directed_system.map_map] at *, exact h end lemma fun_map_unify_equiv {n : ℕ} (F : L.functions n) (x : (fin n) → (Σ i, G i)) (i j : ι) (hi : i ∈ upper_bounds (range (sigma.fst ∘ x))) (hj : j ∈ upper_bounds (range (sigma.fst ∘ x))) : (⟨i, fun_map F (unify f x i hi)⟩ : Σ i, G i) ≈ ⟨j, fun_map F (unify f x j hj)⟩ := begin obtain ⟨k, ik, jk⟩ := directed_of (≤) i j, refine ⟨k, ik, jk, _⟩, rw [(f i k ik).map_fun, (f j k jk).map_fun, comp_unify, comp_unify], end lemma rel_map_unify_equiv {n : ℕ} (R : L.relations n) (x : (fin n) → (Σ i, G i)) (i j : ι) (hi : i ∈ upper_bounds (range (sigma.fst ∘ x))) (hj : j ∈ upper_bounds (range (sigma.fst ∘ x))) : rel_map R (unify f x i hi) = rel_map R (unify f x j hj) := begin obtain ⟨k, ik, jk⟩ := directed_of (≤) i j, rw [← (f i k ik).map_rel, comp_unify, ← (f j k jk).map_rel, comp_unify], end variable [nonempty ι] lemma exists_unify_eq {α : Type*} [fintype α] {x y : α → (Σ i, G i)} (xy : x ≈ y) : ∃ (i : ι) (hx : i ∈ upper_bounds (range (sigma.fst ∘ x))) (hy : i ∈ upper_bounds (range (sigma.fst ∘ y))), unify f x i hx = unify f y i hy := begin obtain ⟨i, hi⟩ := fintype.bdd_above_range (sum.elim (λ a, (x a).1) (λ a, (y a).1)), rw [sum.elim_range, upper_bounds_union] at hi, simp_rw [← function.comp_apply sigma.fst _] at hi, exact ⟨i, hi.1, hi.2, funext (λ a, (equiv_iff G f _ _).1 (xy a))⟩, end lemma fun_map_equiv_unify {n : ℕ} (F : L.functions n) (x : (fin n) → (Σ i, G i)) (i : ι) (hi : i ∈ upper_bounds (range (sigma.fst ∘ x))) : @fun_map _ _ (sigma_structure G f) _ F x ≈ ⟨_, fun_map F (unify f x i hi)⟩ := fun_map_unify_equiv G f F x (classical.some (fintype.bdd_above_range (λ a, (x a).1))) i _ hi lemma rel_map_equiv_unify {n : ℕ} (R : L.relations n) (x : (fin n) → (Σ i, G i)) (i : ι) (hi : i ∈ upper_bounds (range (sigma.fst ∘ x))) : @rel_map _ _ (sigma_structure G f) _ R x = rel_map R (unify f x i hi) := rel_map_unify_equiv G f R x (classical.some (fintype.bdd_above_range (λ a, (x a).1))) i _ hi /-- The direct limit `setoid` respects the structure `sigma_structure`, so quotienting by it gives rise to a valid structure. -/ noncomputable instance prestructure : L.prestructure (direct_limit.setoid G f) := { to_structure := sigma_structure G f, fun_equiv := λ n F x y xy, begin obtain ⟨i, hx, hy, h⟩ := exists_unify_eq G f xy, refine setoid.trans (fun_map_equiv_unify G f F x i hx) (setoid.trans _ (setoid.symm (fun_map_equiv_unify G f F y i hy))), rw h, end, rel_equiv := λ n R x y xy, begin obtain ⟨i, hx, hy, h⟩ := exists_unify_eq G f xy, refine trans (rel_map_equiv_unify G f R x i hx) (trans _ (symm (rel_map_equiv_unify G f R y i hy))), rw h, end } /-- The `L.Structure` on a direct limit of `L.Structure`s. -/ noncomputable instance Structure : L.Structure (direct_limit G f) := language.quotient_structure @[simp] lemma fun_map_quotient_mk_sigma_mk {n : ℕ} {F : L.functions n} {i : ι} {x : fin n → G i} : fun_map F (λ a, (⟦⟨i, x a⟩⟧ : direct_limit G f)) = ⟦⟨i, fun_map F x⟩⟧ := begin simp only [function.comp_app, fun_map_quotient_mk, quotient.eq], obtain ⟨k, ik, jk⟩ := directed_of (≤) i (classical.some (fintype.bdd_above_range (λ (a : fin n), i))), refine ⟨k, jk, ik, _⟩, simp only [embedding.map_fun, comp_unify], refl end @[simp] lemma rel_map_quotient_mk_sigma_mk {n : ℕ} {R : L.relations n} {i : ι} {x : fin n → G i} : rel_map R (λ a, (⟦⟨i, x a⟩⟧ : direct_limit G f)) = rel_map R x := begin rw [rel_map_quotient_mk], obtain ⟨k, ik, jk⟩ := directed_of (≤) i (classical.some (fintype.bdd_above_range (λ (a : fin n), i))), rw [rel_map_equiv_unify G f R (λ a, ⟨i, x a⟩) i, unify_sigma_mk_self], end lemma exists_quotient_mk_sigma_mk_eq {α : Type*} [fintype α] (x : α → direct_limit G f) : ∃ (i : ι) (y : α → G i), x = quotient.mk ∘ (sigma.mk i) ∘ y := begin obtain ⟨i, hi⟩ := fintype.bdd_above_range (λ a, (x a).out.1), refine ⟨i, unify f (quotient.out ∘ x) i hi, _⟩, ext a, rw [quotient.eq_mk_iff_out, function.comp_app, unify, equiv_iff G f _], { simp only [directed_system.map_self] }, { refl } end variables (L ι) /-- The canonical map from a component to the direct limit. -/ def of (i : ι) : G i ↪[L] direct_limit G f := { to_fun := quotient.mk ∘ sigma.mk i, inj' := λ x y h, begin simp only [quotient.eq] at h, obtain ⟨j, h1, h2, h3⟩ := h, exact (f i j h1).injective h3, end } variables {L ι G f} @[simp] lemma of_apply {i : ι} {x : G i} : of L ι G f i x = ⟦⟨i, x⟩⟧ := rfl @[simp] lemma of_f {i j : ι} {hij : i ≤ j} {x : G i} : (of L ι G f j (f i j hij x)) = of L ι G f i x := begin simp only [of_apply, quotient.eq], refine setoid.symm ⟨j, hij, refl j, _⟩, simp only [directed_system.map_self], end /-- Every element of the direct limit corresponds to some element in some component of the directed system. -/ theorem exists_of (z : direct_limit G f) : ∃ i x, of L ι G f i x = z := ⟨z.out.1, z.out.2, by simp⟩ @[elab_as_eliminator] protected theorem induction_on {C : direct_limit G f → Prop} (z : direct_limit G f) (ih : ∀ i x, C (of L ι G f i x)) : C z := let ⟨i, x, h⟩ := exists_of z in h ▸ ih i x variables {P : Type u₁} [L.Structure P] (g : Π i, G i ↪[L] P) variables (Hg : ∀ i j hij x, g j (f i j hij x) = g i x) include Hg variables (L ι G f) /-- The universal property of the direct limit: maps from the components to another module that respect the directed system structure (i.e. make some diagram commute) give rise to a unique map out of the direct limit. -/ def lift : direct_limit G f ↪[L] P := { to_fun := quotient.lift (λ (x : Σ i, G i), (g x.1) x.2) (λ x y xy, begin simp only, obtain ⟨i, hx, hy⟩ := directed_of (≤) x.1 y.1, rw [← Hg x.1 i hx, ← Hg y.1 i hy], exact congr_arg _ ((equiv_iff _ _ _ _).1 xy), end), inj' := λ x y xy, begin rw [← quotient.out_eq x, ← quotient.out_eq y, quotient.lift_mk, quotient.lift_mk] at xy, obtain ⟨i, hx, hy⟩ := directed_of (≤) x.out.1 y.out.1, rw [← Hg x.out.1 i hx, ← Hg y.out.1 i hy] at xy, rw [← quotient.out_eq x, ← quotient.out_eq y, quotient.eq, equiv_iff G f hx hy], exact (g i).injective xy, end, map_fun' := λ n F x, begin obtain ⟨i, y, rfl⟩ := exists_quotient_mk_sigma_mk_eq G f x, rw [fun_map_quotient_mk_sigma_mk, ← function.comp.assoc, quotient.lift_comp_mk], simp only [quotient.lift_mk, embedding.map_fun], end, map_rel' := λ n R x, begin obtain ⟨i, y, rfl⟩ := exists_quotient_mk_sigma_mk_eq G f x, rw [rel_map_quotient_mk_sigma_mk G f, ← (g i).map_rel R y, ← function.comp.assoc, quotient.lift_comp_mk], end } variables {L ι G f} omit Hg @[simp] lemma lift_quotient_mk_sigma_mk {i} (x : G i) : lift L ι G f g Hg (⟦⟨i, x⟩⟧) = (g i) x := begin change (lift L ι G f g Hg).to_fun (⟦⟨i, x⟩⟧) = _, simp only [lift, quotient.lift_mk], end lemma lift_of {i} (x : G i) : lift L ι G f g Hg (of L ι G f i x) = g i x := by simp theorem lift_unique (F : direct_limit G f ↪[L] P) (x) : F x = lift L ι G f (λ i, F.comp $ of L ι G f i) (λ i j hij x, by rw [F.comp_apply, F.comp_apply, of_f]) x := direct_limit.induction_on x $ λ i x, by rw lift_of; refl /-- The direct limit of countably many countably generated structures is countably generated. -/ theorem cg {ι : Type*} [encodable ι] [preorder ι] [is_directed ι (≤)] [nonempty ι] {G : ι → Type w} [Π i, L.Structure (G i)] (f : Π i j, i ≤ j → G i ↪[L] G j) (h : ∀ i, Structure.cg L (G i)) [directed_system G (λ i j h, f i j h)] : Structure.cg L (direct_limit G f) := begin refine ⟨⟨⋃ i, direct_limit.of L ι G f i '' (classical.some (h i).out), _, _⟩⟩, { exact set.countable_Union (λ i, set.countable.image (classical.some_spec (h i).out).1 _) }, { rw [eq_top_iff, substructure.closure_Union], simp_rw [← embedding.coe_to_hom, substructure.closure_image], rw le_supr_iff, intros S hS x hx, let out := @quotient.out _ (direct_limit.setoid G f), refine hS (out x).1 ⟨(out x).2, _, _⟩, { rw [(classical.some_spec (h (out x).1).out).2], simp only [substructure.coe_top] }, { simp only [embedding.coe_to_hom, direct_limit.of_apply, sigma.eta, quotient.out_eq] } } end instance cg' {ι : Type*} [encodable ι] [preorder ι] [is_directed ι (≤)] [nonempty ι] {G : ι → Type w} [Π i, L.Structure (G i)] (f : Π i j, i ≤ j → G i ↪[L] G j) [h : ∀ i, Structure.cg L (G i)] [directed_system G (λ i j h, f i j h)] : Structure.cg L (direct_limit G f) := cg f h end direct_limit end language end first_order