/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import data.vector.basic /-! # Small types A type is `w`-small if there exists an equivalence to some `S : Type w`. We provide a noncomputable model `shrink α : Type w`, and `equiv_shrink α : α ≃ shrink α`. A subsingleton type is `w`-small for any `w`. If `α ≃ β`, then `small.{w} α ↔ small.{w} β`. -/ universes u w v /-- A type is `small.{w}` if there exists an equivalence to some `S : Type w`. -/ class small (α : Type v) : Prop := (equiv_small : ∃ (S : Type w), nonempty (α ≃ S)) /-- Constructor for `small α` from an explicit witness type and equivalence. -/ lemma small.mk' {α : Type v} {S : Type w} (e : α ≃ S) : small.{w} α := ⟨⟨S, ⟨e⟩⟩⟩ /-- An arbitrarily chosen model in `Type w` for a `w`-small type. -/ @[nolint has_nonempty_instance] def shrink (α : Type v) [small.{w} α] : Type w := classical.some (@small.equiv_small α _) /-- The noncomputable equivalence between a `w`-small type and a model. -/ noncomputable def equiv_shrink (α : Type v) [small.{w} α] : α ≃ shrink α := nonempty.some (classical.some_spec (@small.equiv_small α _)) @[priority 100] instance small_self (α : Type v) : small.{v} α := small.mk' $ equiv.refl α theorem small_map {α : Type*} {β : Type*} [hβ : small.{w} β] (e : α ≃ β) : small.{w} α := let ⟨γ, ⟨f⟩⟩ := hβ.equiv_small in small.mk' (e.trans f) theorem small_lift (α : Type u) [hα : small.{v} α] : small.{max v w} α := let ⟨⟨γ, ⟨f⟩⟩⟩ := hα in small.mk' $ f.trans equiv.ulift.symm @[priority 100] instance small_max (α : Type v) : small.{max w v} α := small_lift.{v w} α instance small_ulift (α : Type u) [small.{v} α] : small.{v} (ulift.{w} α) := small_map equiv.ulift theorem small_type : small.{max (u+1) v} (Type u) := small_max.{max (u+1) v} _ section open_locale classical theorem small_congr {α : Type*} {β : Type*} (e : α ≃ β) : small.{w} α ↔ small.{w} β := ⟨λ h, @small_map _ _ h e.symm, λ h, @small_map _ _ h e⟩ instance small_subtype (α : Type v) [small.{w} α] (P : α → Prop) : small.{w} { x // P x } := small_map (equiv_shrink α).subtype_equiv_of_subtype' theorem small_of_injective {α : Type v} {β : Type w} [small.{u} β] {f : α → β} (hf : function.injective f) : small.{u} α := small_map (equiv.of_injective f hf) theorem small_of_surjective {α : Type v} {β : Type w} [small.{u} α] {f : α → β} (hf : function.surjective f) : small.{u} β := small_of_injective (function.injective_surj_inv hf) theorem small_subset {α : Type v} {s t : set α} (hts : t ⊆ s) [small.{u} s] : small.{u} t := let f : t → s := λ x, ⟨x, hts x.prop⟩ in @small_of_injective _ _ _ f (λ x y hxy, subtype.ext (subtype.mk.inj hxy)) @[priority 100] instance small_subsingleton (α : Type v) [subsingleton α] : small.{w} α := begin rcases is_empty_or_nonempty α; resetI, { apply small_map (equiv.equiv_pempty α) }, { apply small_map equiv.punit_of_nonempty_of_subsingleton, assumption' }, end /-! We don't define `small_of_fintype` or `small_of_countable` in this file, to keep imports to `logic` to a minimum. -/ instance small_Pi {α} (β : α → Type*) [small.{w} α] [∀ a, small.{w} (β a)] : small.{w} (Π a, β a) := ⟨⟨Π a' : shrink α, shrink (β ((equiv_shrink α).symm a')), ⟨equiv.Pi_congr (equiv_shrink α) (λ a, by simpa using equiv_shrink (β a))⟩⟩⟩ instance small_sigma {α} (β : α → Type*) [small.{w} α] [∀ a, small.{w} (β a)] : small.{w} (Σ a, β a) := ⟨⟨Σ a' : shrink α, shrink (β ((equiv_shrink α).symm a')), ⟨equiv.sigma_congr (equiv_shrink α) (λ a, by simpa using equiv_shrink (β a))⟩⟩⟩ instance small_prod {α β} [small.{w} α] [small.{w} β] : small.{w} (α × β) := ⟨⟨shrink α × shrink β, ⟨equiv.prod_congr (equiv_shrink α) (equiv_shrink β)⟩⟩⟩ instance small_sum {α β} [small.{w} α] [small.{w} β] : small.{w} (α ⊕ β) := ⟨⟨shrink α ⊕ shrink β, ⟨equiv.sum_congr (equiv_shrink α) (equiv_shrink β)⟩⟩⟩ instance small_set {α} [small.{w} α] : small.{w} (set α) := ⟨⟨set (shrink α), ⟨equiv.set.congr (equiv_shrink α)⟩⟩⟩ instance small_range {α : Type v} {β : Type w} (f : α → β) [small.{u} α] : small.{u} (set.range f) := small_of_surjective set.surjective_onto_range instance small_image {α : Type v} {β : Type w} (f : α → β) (S : set α) [small.{u} S] : small.{u} (f '' S) := small_of_surjective set.surjective_onto_image theorem not_small_type : ¬ small.{u} (Type (max u v)) | ⟨⟨S, ⟨e⟩⟩⟩ := @function.cantor_injective (Σ α, e.symm α) (λ a, ⟨_, cast (e.3 _).symm a⟩) (λ a b e, (cast_inj _).1 $ eq_of_heq (sigma.mk.inj e).2) instance small_vector {α : Type v} {n : ℕ} [small.{u} α] : small.{u} (vector α n) := small_of_injective (equiv.vector_equiv_fin α n).injective instance small_list {α : Type v} [small.{u} α] : small.{u} (list α) := begin let e : (Σ n, vector α n) ≃ list α := equiv.sigma_fiber_equiv list.length, exact small_of_surjective e.surjective, end end