/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen -/ import linear_algebra.matrix.determinant /-! # Changing the index type of a matrix This file concerns the map `matrix.reindex`, mapping a `m` by `n` matrix to an `m'` by `n'` matrix, as long as `m ≃ m'` and `n ≃ n'`. ## Main definitions * `matrix.reindex_linear_equiv R A`: `matrix.reindex` is an `R`-linear equivalence between `A`-matrices. * `matrix.reindex_alg_equiv R`: `matrix.reindex` is an `R`-algebra equivalence between `R`-matrices. ## Tags matrix, reindex -/ namespace matrix open equiv open_locale matrix variables {l m n o : Type*} {l' m' n' o' : Type*} {m'' n'' : Type*} variables (R A : Type*) section add_comm_monoid variables [semiring R] [add_comm_monoid A] [module R A] /-- The natural map that reindexes a matrix's rows and columns with equivalent types, `matrix.reindex`, is a linear equivalence. -/ def reindex_linear_equiv (eₘ : m ≃ m') (eₙ : n ≃ n') : matrix m n A ≃ₗ[R] matrix m' n' A := { map_add' := λ _ _, rfl, map_smul' := λ _ _, rfl, ..(reindex eₘ eₙ)} @[simp] lemma reindex_linear_equiv_apply (eₘ : m ≃ m') (eₙ : n ≃ n') (M : matrix m n A) : reindex_linear_equiv R A eₘ eₙ M = reindex eₘ eₙ M := rfl @[simp] lemma reindex_linear_equiv_symm (eₘ : m ≃ m') (eₙ : n ≃ n') : (reindex_linear_equiv R A eₘ eₙ).symm = reindex_linear_equiv R A eₘ.symm eₙ.symm := rfl @[simp] lemma reindex_linear_equiv_refl_refl : reindex_linear_equiv R A (equiv.refl m) (equiv.refl n) = linear_equiv.refl R _ := linear_equiv.ext $ λ _, rfl lemma reindex_linear_equiv_trans (e₁ : m ≃ m') (e₂ : n ≃ n') (e₁' : m' ≃ m'') (e₂' : n' ≃ n'') : (reindex_linear_equiv R A e₁ e₂).trans (reindex_linear_equiv R A e₁' e₂') = (reindex_linear_equiv R A (e₁.trans e₁') (e₂.trans e₂') : _ ≃ₗ[R] _) := by { ext, refl } lemma reindex_linear_equiv_comp (e₁ : m ≃ m') (e₂ : n ≃ n') (e₁' : m' ≃ m'') (e₂' : n' ≃ n'') : (reindex_linear_equiv R A e₁' e₂') ∘ (reindex_linear_equiv R A e₁ e₂) = reindex_linear_equiv R A (e₁.trans e₁') (e₂.trans e₂') := by { rw [← reindex_linear_equiv_trans], refl } lemma reindex_linear_equiv_comp_apply (e₁ : m ≃ m') (e₂ : n ≃ n') (e₁' : m' ≃ m'') (e₂' : n' ≃ n'') (M : matrix m n A) : (reindex_linear_equiv R A e₁' e₂') (reindex_linear_equiv R A e₁ e₂ M) = reindex_linear_equiv R A (e₁.trans e₁') (e₂.trans e₂') M := minor_minor _ _ _ _ _ lemma reindex_linear_equiv_one [decidable_eq m] [decidable_eq m'] [has_one A] (e : m ≃ m') : (reindex_linear_equiv R A e e (1 : matrix m m A)) = 1 := minor_one_equiv e.symm end add_comm_monoid section semiring variables [semiring R] [semiring A] [module R A] lemma reindex_linear_equiv_mul [fintype n] [fintype n'] (eₘ : m ≃ m') (eₙ : n ≃ n') (eₒ : o ≃ o') (M : matrix m n A) (N : matrix n o A) : reindex_linear_equiv R A eₘ eₙ M ⬝ reindex_linear_equiv R A eₙ eₒ N = reindex_linear_equiv R A eₘ eₒ (M ⬝ N) := minor_mul_equiv M N _ _ _ lemma mul_reindex_linear_equiv_one [fintype n] [fintype o] [decidable_eq o] (e₁ : o ≃ n) (e₂ : o ≃ n') (M : matrix m n A) : M.mul (reindex_linear_equiv R A e₁ e₂ 1) = reindex_linear_equiv R A (equiv.refl m) (e₁.symm.trans e₂) M := mul_minor_one _ _ _ end semiring section algebra variables [comm_semiring R] [fintype n] [fintype m] [decidable_eq m] [decidable_eq n] /-- For square matrices with coefficients in commutative semirings, the natural map that reindexes a matrix's rows and columns with equivalent types, `matrix.reindex`, is an equivalence of algebras. -/ def reindex_alg_equiv (e : m ≃ n) : matrix m m R ≃ₐ[R] matrix n n R := { to_fun := reindex e e, map_mul' := λ a b, (reindex_linear_equiv_mul R R e e e a b).symm, commutes' := λ r, by simp [algebra_map, algebra.to_ring_hom, minor_smul], ..(reindex_linear_equiv R R e e) } @[simp] lemma reindex_alg_equiv_apply (e : m ≃ n) (M : matrix m m R) : reindex_alg_equiv R e M = reindex e e M := rfl @[simp] lemma reindex_alg_equiv_symm (e : m ≃ n) : (reindex_alg_equiv R e).symm = reindex_alg_equiv R e.symm := rfl @[simp] lemma reindex_alg_equiv_refl : reindex_alg_equiv R (equiv.refl m) = alg_equiv.refl := alg_equiv.ext $ λ _, rfl lemma reindex_alg_equiv_mul (e : m ≃ n) (M : matrix m m R) (N : matrix m m R) : reindex_alg_equiv R e (M ⬝ N) = reindex_alg_equiv R e M ⬝ reindex_alg_equiv R e N := (reindex_alg_equiv R e).map_mul M N end algebra /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_minor_equiv_self`. -/ lemma det_reindex_linear_equiv_self [comm_ring R] [fintype m] [decidable_eq m] [fintype n] [decidable_eq n] (e : m ≃ n) (M : matrix m m R) : det (reindex_linear_equiv R R e e M) = det M := det_reindex_self e M /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_minor_equiv_self`. -/ lemma det_reindex_alg_equiv [comm_ring R] [fintype m] [decidable_eq m] [fintype n] [decidable_eq n] (e : m ≃ n) (A : matrix m m R) : det (reindex_alg_equiv R e A) = det A := det_reindex_self e A end matrix