/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov -/ import linear_algebra.quotient /-! # Isomorphism theorems for modules. * The Noether's first, second, and third isomorphism theorems for modules are proved as `linear_map.quot_ker_equiv_range`, `linear_map.quotient_inf_equiv_sup_quotient` and `submodule.quotient_quotient_equiv_quotient`. -/ universes u v variables {R M M₂ M₃ : Type*} variables [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variables [module R M] [module R M₂] [module R M₃] variables (f : M →ₗ[R] M₂) /-! The first and second isomorphism theorems for modules. -/ namespace linear_map open submodule section isomorphism_laws /-- The first isomorphism law for modules. The quotient of `M` by the kernel of `f` is linearly equivalent to the range of `f`. -/ noncomputable def quot_ker_equiv_range : (M ⧸ f.ker) ≃ₗ[R] f.range := (linear_equiv.of_injective (f.ker.liftq f $ le_rfl) $ ker_eq_bot.mp $ submodule.ker_liftq_eq_bot _ _ _ (le_refl f.ker)).trans (linear_equiv.of_eq _ _ $ submodule.range_liftq _ _ _) /-- The first isomorphism theorem for surjective linear maps. -/ noncomputable def quot_ker_equiv_of_surjective (f : M →ₗ[R] M₂) (hf : function.surjective f) : (M ⧸ f.ker) ≃ₗ[R] M₂ := f.quot_ker_equiv_range.trans (linear_equiv.of_top f.range (linear_map.range_eq_top.2 hf)) @[simp] lemma quot_ker_equiv_range_apply_mk (x : M) : (f.quot_ker_equiv_range (submodule.quotient.mk x) : M₂) = f x := rfl @[simp] lemma quot_ker_equiv_range_symm_apply_image (x : M) (h : f x ∈ f.range) : f.quot_ker_equiv_range.symm ⟨f x, h⟩ = f.ker.mkq x := f.quot_ker_equiv_range.symm_apply_apply (f.ker.mkq x) /-- Canonical linear map from the quotient `p/(p ∩ p')` to `(p+p')/p'`, mapping `x + (p ∩ p')` to `x + p'`, where `p` and `p'` are submodules of an ambient module. -/ def quotient_inf_to_sup_quotient (p p' : submodule R M) : p ⧸ (comap p.subtype (p ⊓ p')) →ₗ[R] _ ⧸ (comap (p ⊔ p').subtype p') := (comap p.subtype (p ⊓ p')).liftq ((comap (p ⊔ p').subtype p').mkq.comp (of_le le_sup_left)) begin rw [ker_comp, of_le, comap_cod_restrict, ker_mkq, map_comap_subtype], exact comap_mono (inf_le_inf_right _ le_sup_left) end /-- Second Isomorphism Law : the canonical map from `p/(p ∩ p')` to `(p+p')/p'` as a linear isomorphism. -/ noncomputable def quotient_inf_equiv_sup_quotient (p p' : submodule R M) : (p ⧸ (comap p.subtype (p ⊓ p'))) ≃ₗ[R] _ ⧸ (comap (p ⊔ p').subtype p') := linear_equiv.of_bijective (quotient_inf_to_sup_quotient p p') begin rw [← ker_eq_bot, quotient_inf_to_sup_quotient, ker_liftq_eq_bot], rw [ker_comp, ker_mkq], exact λ ⟨x, hx1⟩ hx2, ⟨hx1, hx2⟩ end begin rw [← range_eq_top, quotient_inf_to_sup_quotient, range_liftq, eq_top_iff'], rintros ⟨x, hx⟩, rcases mem_sup.1 hx with ⟨y, hy, z, hz, rfl⟩, use [⟨y, hy⟩], apply (submodule.quotient.eq _).2, change y - (y + z) ∈ p', rwa [sub_add_eq_sub_sub, sub_self, zero_sub, neg_mem_iff] end @[simp] lemma coe_quotient_inf_to_sup_quotient (p p' : submodule R M) : ⇑(quotient_inf_to_sup_quotient p p') = quotient_inf_equiv_sup_quotient p p' := rfl @[simp] lemma quotient_inf_equiv_sup_quotient_apply_mk (p p' : submodule R M) (x : p) : quotient_inf_equiv_sup_quotient p p' (submodule.quotient.mk x) = submodule.quotient.mk (of_le (le_sup_left : p ≤ p ⊔ p') x) := rfl lemma quotient_inf_equiv_sup_quotient_symm_apply_left (p p' : submodule R M) (x : p ⊔ p') (hx : (x:M) ∈ p) : (quotient_inf_equiv_sup_quotient p p').symm (submodule.quotient.mk x) = submodule.quotient.mk ⟨x, hx⟩ := (linear_equiv.symm_apply_eq _).2 $ by simp [of_le_apply] @[simp] lemma quotient_inf_equiv_sup_quotient_symm_apply_eq_zero_iff {p p' : submodule R M} {x : p ⊔ p'} : (quotient_inf_equiv_sup_quotient p p').symm (submodule.quotient.mk x) = 0 ↔ (x:M) ∈ p' := (linear_equiv.symm_apply_eq _).trans $ by simp [of_le_apply] lemma quotient_inf_equiv_sup_quotient_symm_apply_right (p p' : submodule R M) {x : p ⊔ p'} (hx : (x:M) ∈ p') : (quotient_inf_equiv_sup_quotient p p').symm (submodule.quotient.mk x) = 0 := quotient_inf_equiv_sup_quotient_symm_apply_eq_zero_iff.2 hx end isomorphism_laws end linear_map /-! The third isomorphism theorem for modules. -/ namespace submodule variables (S T : submodule R M) (h : S ≤ T) /-- The map from the third isomorphism theorem for modules: `(M / S) / (T / S) → M / T`. -/ def quotient_quotient_equiv_quotient_aux : (M ⧸ S) ⧸ (T.map S.mkq) →ₗ[R] M ⧸ T := liftq _ (mapq S T linear_map.id h) (by { rintro _ ⟨x, hx, rfl⟩, rw [linear_map.mem_ker, mkq_apply, mapq_apply], exact (quotient.mk_eq_zero _).mpr hx }) @[simp] lemma quotient_quotient_equiv_quotient_aux_mk (x : M ⧸ S) : quotient_quotient_equiv_quotient_aux S T h (quotient.mk x) = mapq S T linear_map.id h x := liftq_apply _ _ _ @[simp] lemma quotient_quotient_equiv_quotient_aux_mk_mk (x : M) : quotient_quotient_equiv_quotient_aux S T h (quotient.mk (quotient.mk x)) = quotient.mk x := by rw [quotient_quotient_equiv_quotient_aux_mk, mapq_apply, linear_map.id_apply] /-- **Noether's third isomorphism theorem** for modules: `(M / S) / (T / S) ≃ M / T`. -/ def quotient_quotient_equiv_quotient : ((M ⧸ S) ⧸ (T.map S.mkq)) ≃ₗ[R] M ⧸ T := { to_fun := quotient_quotient_equiv_quotient_aux S T h, inv_fun := mapq _ _ (mkq S) (le_comap_map _ _), left_inv := λ x, quotient.induction_on' x $ λ x, quotient.induction_on' x $ λ x, by simp, right_inv := λ x, quotient.induction_on' x $ λ x, by simp, .. quotient_quotient_equiv_quotient_aux S T h } end submodule