/- Copyright (c) 2022 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import group_theory.subsemigroup.operations /-! # Subsemigroups: membership criteria In this file we prove various facts about membership in a subsemigroup. The intent is to mimic `group_theory/submonoid/membership`, but currently this file is mostly a stub and only provides rudimentary support. * `mem_supr_of_directed`, `coe_supr_of_directed`, `mem_Sup_of_directed_on`, `coe_Sup_of_directed_on`: the supremum of a directed collection of subsemigroup is their union. ## TODO * Define the `free_semigroup` generated by a set. This might require some rather substantial additions to low-level API. For example, developing the subtype of nonempty lists, then defining a product on nonempty lists, powers where the exponent is a positive natural, et cetera. Another option would be to define the `free_semigroup` as the subsemigroup (pushed to be a semigroup) of the `free_monoid` consisting of non-identity elements. ## Tags subsemigroup -/ variables {ι : Sort*} {M A B : Type*} section non_assoc variables [has_mul M] open set namespace subsemigroup -- TODO: this section can be generalized to `[mul_mem_class B M] [complete_lattice B]` -- such that `complete_lattice.le` coincides with `set_like.le` @[to_additive] lemma mem_supr_of_directed {S : ι → subsemigroup M} (hS : directed (≤) S) {x : M} : x ∈ (⨆ i, S i) ↔ ∃ i, x ∈ S i := begin refine ⟨_, λ ⟨i, hi⟩, (set_like.le_def.1 $ le_supr S i) hi⟩, suffices : x ∈ closure (⋃ i, (S i : set M)) → ∃ i, x ∈ S i, by simpa only [closure_Union, closure_eq (S _)] using this, refine (λ hx, closure_induction hx (λ y hy, mem_Union.mp hy) _), { rintros x y ⟨i, hi⟩ ⟨j, hj⟩, rcases hS i j with ⟨k, hki, hkj⟩, exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩ } end @[to_additive] lemma coe_supr_of_directed {S : ι → subsemigroup M} (hS : directed (≤) S) : ((⨆ i, S i : subsemigroup M) : set M) = ⋃ i, ↑(S i) := set.ext $ λ x, by simp [mem_supr_of_directed hS] @[to_additive] lemma mem_Sup_of_directed_on {S : set (subsemigroup M)} (hS : directed_on (≤) S) {x : M} : x ∈ Sup S ↔ ∃ s ∈ S, x ∈ s := by simp only [Sup_eq_supr', mem_supr_of_directed hS.directed_coe, set_coe.exists, subtype.coe_mk] @[to_additive] lemma coe_Sup_of_directed_on {S : set (subsemigroup M)} (hS : directed_on (≤) S) : (↑(Sup S) : set M) = ⋃ s ∈ S, ↑s := set.ext $ λ x, by simp [mem_Sup_of_directed_on hS] @[to_additive] lemma mem_sup_left {S T : subsemigroup M} : ∀ {x : M}, x ∈ S → x ∈ S ⊔ T := show S ≤ S ⊔ T, from le_sup_left @[to_additive] lemma mem_sup_right {S T : subsemigroup M} : ∀ {x : M}, x ∈ T → x ∈ S ⊔ T := show T ≤ S ⊔ T, from le_sup_right @[to_additive] lemma mul_mem_sup {S T : subsemigroup M} {x y : M} (hx : x ∈ S) (hy : y ∈ T) : x * y ∈ S ⊔ T := mul_mem (mem_sup_left hx) (mem_sup_right hy) @[to_additive] lemma mem_supr_of_mem {S : ι → subsemigroup M} (i : ι) : ∀ {x : M}, x ∈ S i → x ∈ supr S := show S i ≤ supr S, from le_supr _ _ @[to_additive] lemma mem_Sup_of_mem {S : set (subsemigroup M)} {s : subsemigroup M} (hs : s ∈ S) : ∀ {x : M}, x ∈ s → x ∈ Sup S := show s ≤ Sup S, from le_Sup hs /-- An induction principle for elements of `⨆ i, S i`. If `C` holds all elements of `S i` for all `i`, and is preserved under multiplication, then it holds for all elements of the supremum of `S`. -/ @[elab_as_eliminator, to_additive /-" An induction principle for elements of `⨆ i, S i`. If `C` holds all elements of `S i` for all `i`, and is preserved under addition, then it holds for all elements of the supremum of `S`. "-/] lemma supr_induction (S : ι → subsemigroup M) {C : M → Prop} {x : M} (hx : x ∈ ⨆ i, S i) (hp : ∀ i (x ∈ S i), C x) (hmul : ∀ x y, C x → C y → C (x * y)) : C x := begin rw supr_eq_closure at hx, refine closure_induction hx (λ x hx, _) hmul, obtain ⟨i, hi⟩ := set.mem_Union.mp hx, exact hp _ _ hi, end /-- A dependent version of `subsemigroup.supr_induction`. -/ @[elab_as_eliminator, to_additive /-"A dependent version of `add_subsemigroup.supr_induction`. "-/] lemma supr_induction' (S : ι → subsemigroup M) {C : Π x, (x ∈ ⨆ i, S i) → Prop} (hp : ∀ i (x ∈ S i), C x (mem_supr_of_mem i ‹_›)) (hmul : ∀ x y hx hy, C x hx → C y hy → C (x * y) (mul_mem ‹_› ‹_›)) {x : M} (hx : x ∈ ⨆ i, S i) : C x hx := begin refine exists.elim _ (λ (hx : x ∈ ⨆ i, S i) (hc : C x hx), hc), refine supr_induction S hx (λ i x hx, _) (λ x y, _), { exact ⟨_, hp _ _ hx⟩ }, { rintro ⟨_, Cx⟩ ⟨_, Cy⟩, exact ⟨_, hmul _ _ _ _ Cx Cy⟩ }, end end subsemigroup end non_assoc