/- Copyright (c) 2018 Kevin Buzzard, Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard, Patrick Massot This file is to a certain extent based on `quotient_module.lean` by Johannes Hölzl. -/ import group_theory.coset import group_theory.congruence /-! # Quotients of groups by normal subgroups This files develops the basic theory of quotients of groups by normal subgroups. In particular it proves Noether's first and second isomorphism theorems. ## Main definitions * `mk'`: the canonical group homomorphism `G →* G/N` given a normal subgroup `N` of `G`. * `lift φ`: the group homomorphism `G/N →* H` given a group homomorphism `φ : G →* H` such that `N ⊆ ker φ`. * `map f`: the group homomorphism `G/N →* H/M` given a group homomorphism `f : G →* H` such that `N ⊆ f⁻¹(M)`. ## Main statements * `quotient_ker_equiv_range`: Noether's first isomorphism theorem, an explicit isomorphism `G/ker φ → range φ` for every group homomorphism `φ : G →* H`. * `quotient_inf_equiv_prod_normal_quotient`: Noether's second isomorphism theorem, an explicit isomorphism between `H/(H ∩ N)` and `(HN)/N` given a subgroup `H` and a normal subgroup `N` of a group `G`. * `quotient_group.quotient_quotient_equiv_quotient`: Noether's third isomorphism theorem, the canonical isomorphism between `(G / N) / (M / N)` and `G / M`, where `N ≤ M`. ## Tags isomorphism theorems, quotient groups -/ universes u v namespace quotient_group variables {G : Type u} [group G] (N : subgroup G) [nN : N.normal] {H : Type v} [group H] include nN /-- The congruence relation generated by a normal subgroup. -/ @[to_additive "The additive congruence relation generated by a normal additive subgroup."] protected def con : con G := { to_setoid := left_rel N, mul' := λ a b c d hab hcd, begin rw [left_rel_eq] at hab hcd ⊢, calc (a * c)⁻¹ * (b * d) = c⁻¹ * (a⁻¹ * b) * c⁻¹⁻¹ * (c⁻¹ * d) : by simp only [mul_inv_rev, mul_assoc, inv_mul_cancel_left] ... ∈ N : N.mul_mem (nN.conj_mem _ hab _) hcd end } @[to_additive quotient_add_group.add_group] instance quotient.group : group (G ⧸ N) := (quotient_group.con N).group /-- The group homomorphism from `G` to `G/N`. -/ @[to_additive quotient_add_group.mk' "The additive group homomorphism from `G` to `G/N`."] def mk' : G →* G ⧸ N := monoid_hom.mk' (quotient_group.mk) (λ _ _, rfl) @[simp, to_additive] lemma coe_mk' : (mk' N : G → G ⧸ N) = coe := rfl @[simp, to_additive] lemma mk'_apply (x : G) : mk' N x = x := rfl @[to_additive] lemma mk'_surjective : function.surjective $ mk' N := @mk_surjective _ _ N @[to_additive] lemma mk'_eq_mk' {x y : G} : mk' N x = mk' N y ↔ ∃ z ∈ N, x * z = y := quotient_group.eq'.trans $ by simp only [← _root_.eq_inv_mul_iff_mul_eq, exists_prop, exists_eq_right] /-- Two `monoid_hom`s from a quotient group are equal if their compositions with `quotient_group.mk'` are equal. See note [partially-applied ext lemmas]. -/ @[ext, to_additive /-" Two `add_monoid_hom`s from an additive quotient group are equal if their compositions with `add_quotient_group.mk'` are equal. See note [partially-applied ext lemmas]. "-/] lemma monoid_hom_ext ⦃f g : G ⧸ N →* H⦄ (h : f.comp (mk' N) = g.comp (mk' N)) : f = g := monoid_hom.ext $ λ x, quotient_group.induction_on x $ (monoid_hom.congr_fun h : _) @[simp, to_additive quotient_add_group.eq_zero_iff] lemma eq_one_iff {N : subgroup G} [nN : N.normal] (x : G) : (x : G ⧸ N) = 1 ↔ x ∈ N := begin refine quotient_group.eq.trans _, rw [mul_one, subgroup.inv_mem_iff], end @[simp, to_additive quotient_add_group.ker_mk] lemma ker_mk : monoid_hom.ker (quotient_group.mk' N : G →* G ⧸ N) = N := subgroup.ext eq_one_iff @[to_additive quotient_add_group.eq_iff_sub_mem] lemma eq_iff_div_mem {N : subgroup G} [nN : N.normal] {x y : G} : (x : G ⧸ N) = y ↔ x / y ∈ N := begin refine eq_comm.trans (quotient_group.eq.trans _), rw [nN.mem_comm_iff, div_eq_mul_inv] end -- for commutative groups we don't need normality assumption omit nN @[to_additive quotient_add_group.add_comm_group] instance {G : Type*} [comm_group G] (N : subgroup G) : comm_group (G ⧸ N) := { mul_comm := λ a b, quotient.induction_on₂' a b (λ a b, congr_arg mk (mul_comm a b)), .. @quotient_group.quotient.group _ _ N N.normal_of_comm } include nN local notation ` Q ` := G ⧸ N @[simp, to_additive quotient_add_group.coe_zero] lemma coe_one : ((1 : G) : Q) = 1 := rfl @[simp, to_additive quotient_add_group.coe_add] lemma coe_mul (a b : G) : ((a * b : G) : Q) = a * b := rfl @[simp, to_additive quotient_add_group.coe_neg] lemma coe_inv (a : G) : ((a⁻¹ : G) : Q) = a⁻¹ := rfl @[simp, to_additive quotient_add_group.coe_sub] lemma coe_div (a b : G) : ((a / b : G) : Q) = a / b := rfl @[simp, to_additive quotient_add_group.coe_nsmul] lemma coe_pow (a : G) (n : ℕ) : ((a ^ n : G) : Q) = a ^ n := rfl @[simp, to_additive quotient_add_group.coe_zsmul] lemma coe_zpow (a : G) (n : ℤ) : ((a ^ n : G) : Q) = a ^ n := rfl /-- A group homomorphism `φ : G →* H` with `N ⊆ ker(φ)` descends (i.e. `lift`s) to a group homomorphism `G/N →* H`. -/ @[to_additive quotient_add_group.lift "An `add_group` homomorphism `φ : G →+ H` with `N ⊆ ker(φ)` descends (i.e. `lift`s) to a group homomorphism `G/N →* H`."] def lift (φ : G →* H) (HN : ∀x∈N, φ x = 1) : Q →* H := (quotient_group.con N).lift φ $ λ x y h, begin simp only [quotient_group.con, left_rel_apply, con.rel_mk] at h, calc φ x = φ (y * (x⁻¹ * y)⁻¹) : by rw [mul_inv_rev, inv_inv, mul_inv_cancel_left] ... = φ y : by rw [φ.map_mul, HN _ (N.inv_mem h), mul_one] end @[simp, to_additive quotient_add_group.lift_mk] lemma lift_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) : lift N φ HN (g : Q) = φ g := rfl @[simp, to_additive quotient_add_group.lift_mk'] lemma lift_mk' {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) : lift N φ HN (mk g : Q) = φ g := rfl @[simp, to_additive quotient_add_group.lift_quot_mk] lemma lift_quot_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) : lift N φ HN (quot.mk _ g : Q) = φ g := rfl /-- A group homomorphism `f : G →* H` induces a map `G/N →* H/M` if `N ⊆ f⁻¹(M)`. -/ @[to_additive quotient_add_group.map "An `add_group` homomorphism `f : G →+ H` induces a map `G/N →+ H/M` if `N ⊆ f⁻¹(M)`."] def map (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) : G ⧸ N →* H ⧸ M := begin refine quotient_group.lift N ((mk' M).comp f) _, assume x hx, refine quotient_group.eq.2 _, rw [mul_one, subgroup.inv_mem_iff], exact h hx, end @[simp, to_additive quotient_add_group.map_coe] lemma map_coe (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) : map N M f h ↑x = ↑(f x) := lift_mk' _ _ x @[to_additive quotient_add_group.map_mk'] lemma map_mk' (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) : map N M f h (mk' _ x) = ↑(f x) := quotient_group.lift_mk' _ _ x omit nN variables (φ : G →* H) open function monoid_hom /-- The induced map from the quotient by the kernel to the codomain. -/ @[to_additive quotient_add_group.ker_lift "The induced map from the quotient by the kernel to the codomain."] def ker_lift : G ⧸ ker φ →* H := lift _ φ $ λ g, φ.mem_ker.mp @[simp, to_additive quotient_add_group.ker_lift_mk] lemma ker_lift_mk (g : G) : (ker_lift φ) g = φ g := lift_mk _ _ _ @[simp, to_additive quotient_add_group.ker_lift_mk'] lemma ker_lift_mk' (g : G) : (ker_lift φ) (mk g) = φ g := lift_mk' _ _ _ @[to_additive quotient_add_group.ker_lift_injective] lemma ker_lift_injective : injective (ker_lift φ) := assume a b, quotient.induction_on₂' a b $ assume a b (h : φ a = φ b), quotient.sound' $ by rw [left_rel_apply, mem_ker, φ.map_mul, ← h, φ.map_inv, inv_mul_self] -- Note that `ker φ` isn't definitionally `ker (φ.range_restrict)` -- so there is a bit of annoying code duplication here /-- The induced map from the quotient by the kernel to the range. -/ @[to_additive quotient_add_group.range_ker_lift "The induced map from the quotient by the kernel to the range."] def range_ker_lift : G ⧸ ker φ →* φ.range := lift _ φ.range_restrict $ λ g hg, (mem_ker _).mp $ by rwa range_restrict_ker @[to_additive quotient_add_group.range_ker_lift_injective] lemma range_ker_lift_injective : injective (range_ker_lift φ) := assume a b, quotient.induction_on₂' a b $ assume a b (h : φ.range_restrict a = φ.range_restrict b), quotient.sound' $ by rw [left_rel_apply, ←range_restrict_ker, mem_ker, φ.range_restrict.map_mul, ← h, φ.range_restrict.map_inv, inv_mul_self] @[to_additive quotient_add_group.range_ker_lift_surjective] lemma range_ker_lift_surjective : surjective (range_ker_lift φ) := begin rintro ⟨_, g, rfl⟩, use mk g, refl, end /-- **Noether's first isomorphism theorem** (a definition): the canonical isomorphism between `G/(ker φ)` to `range φ`. -/ @[to_additive quotient_add_group.quotient_ker_equiv_range "The first isomorphism theorem (a definition): the canonical isomorphism between `G/(ker φ)` to `range φ`."] noncomputable def quotient_ker_equiv_range : G ⧸ ker φ ≃* range φ := mul_equiv.of_bijective (range_ker_lift φ) ⟨range_ker_lift_injective φ, range_ker_lift_surjective φ⟩ /-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a homomorphism `φ : G →* H` with a right inverse `ψ : H → G`. -/ @[to_additive quotient_add_group.quotient_ker_equiv_of_right_inverse "The canonical isomorphism `G/(ker φ) ≃+ H` induced by a homomorphism `φ : G →+ H` with a right inverse `ψ : H → G`.", simps] def quotient_ker_equiv_of_right_inverse (ψ : H → G) (hφ : function.right_inverse ψ φ) : G ⧸ ker φ ≃* H := { to_fun := ker_lift φ, inv_fun := mk ∘ ψ, left_inv := λ x, ker_lift_injective φ (by rw [function.comp_app, ker_lift_mk', hφ]), right_inv := hφ, .. ker_lift φ } /-- The canonical isomorphism `G/⊥ ≃* G`. -/ @[to_additive quotient_add_group.quotient_bot "The canonical isomorphism `G/⊥ ≃+ G`.", simps] def quotient_bot : G ⧸ (⊥ : subgroup G) ≃* G := quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (λ x, rfl) /-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a surjection `φ : G →* H`. For a `computable` version, see `quotient_group.quotient_ker_equiv_of_right_inverse`. -/ @[to_additive quotient_add_group.quotient_ker_equiv_of_surjective "The canonical isomorphism `G/(ker φ) ≃+ H` induced by a surjection `φ : G →+ H`. For a `computable` version, see `quotient_add_group.quotient_ker_equiv_of_right_inverse`."] noncomputable def quotient_ker_equiv_of_surjective (hφ : function.surjective φ) : G ⧸ (ker φ) ≃* H := quotient_ker_equiv_of_right_inverse φ _ hφ.has_right_inverse.some_spec /-- If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are isomorphic. -/ @[to_additive "If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are isomorphic."] def equiv_quotient_of_eq {M N : subgroup G} [M.normal] [N.normal] (h : M = N) : G ⧸ M ≃* G ⧸ N := { to_fun := (lift M (mk' N) (λ m hm, quotient_group.eq.mpr (by simpa [← h] using M.inv_mem hm))), inv_fun := (lift N (mk' M) (λ n hn, quotient_group.eq.mpr (by simpa [← h] using N.inv_mem hn))), left_inv := λ x, x.induction_on' $ by { intro, refl }, right_inv := λ x, x.induction_on' $ by { intro, refl }, map_mul' := λ x y, by rw monoid_hom.map_mul } @[simp, to_additive] lemma equiv_quotient_of_eq_mk {M N : subgroup G} [M.normal] [N.normal] (h : M = N) (x : G) : quotient_group.equiv_quotient_of_eq h (quotient_group.mk x) = (quotient_group.mk x) := rfl /-- Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`, then there is a map `A / (A' ⊓ A) →* B / (B' ⊓ B)` induced by the inclusions. -/ @[to_additive "Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`, then there is a map `A / (A' ⊓ A) →+ B / (B' ⊓ B)` induced by the inclusions."] def quotient_map_subgroup_of_of_le {A' A B' B : subgroup G} [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal] (h' : A' ≤ B') (h : A ≤ B) : A ⧸ (A'.subgroup_of A) →* B ⧸ (B'.subgroup_of B) := map _ _ (subgroup.inclusion h) $ by simp [subgroup.subgroup_of, subgroup.comap_comap]; exact subgroup.comap_mono h' @[simp, to_additive] lemma quotient_map_subgroup_of_of_le_coe {A' A B' B : subgroup G} [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal] (h' : A' ≤ B') (h : A ≤ B) (x : A) : quotient_map_subgroup_of_of_le h' h x = ↑(subgroup.inclusion h x : B) := rfl /-- Let `A', A, B', B` be subgroups of `G`. If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic. Applying this equiv is nicer than rewriting along the equalities, since the type of `(A'.subgroup_of A : subgroup A)` depends on on `A`. -/ @[to_additive "Let `A', A, B', B` be subgroups of `G`. If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic. Applying this equiv is nicer than rewriting along the equalities, since the type of `(A'.add_subgroup_of A : add_subgroup A)` depends on on `A`. "] def equiv_quotient_subgroup_of_of_eq {A' A B' B : subgroup G} [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal] (h' : A' = B') (h : A = B) : A ⧸ (A'.subgroup_of A) ≃* B ⧸ (B'.subgroup_of B) := monoid_hom.to_mul_equiv (quotient_map_subgroup_of_of_le h'.le h.le) (quotient_map_subgroup_of_of_le h'.ge h.ge) (by { ext ⟨x, hx⟩, refl }) (by { ext ⟨x, hx⟩, refl }) section zpow variables {A B C : Type u} [comm_group A] [comm_group B] [comm_group C] variables (f : A →* B) (g : B →* A) (e : A ≃* B) (d : B ≃* C) (n : ℤ) /-- The map of quotients by powers of an integer induced by a group homomorphism. -/ @[to_additive "The map of quotients by multiples of an integer induced by an additive group homomorphism."] def hom_quotient_zpow_of_hom : A ⧸ (zpow_group_hom n : A →* A).range →* B ⧸ (zpow_group_hom n : B →* B).range := lift _ ((mk' _).comp f) $ λ g ⟨h, (hg : h ^ n = g)⟩, (eq_one_iff _).mpr ⟨_, by simpa only [← hg, map_zpow]⟩ @[to_additive, simp] lemma hom_quotient_zpow_of_hom_id : hom_quotient_zpow_of_hom (monoid_hom.id A) n = monoid_hom.id _ := monoid_hom_ext _ rfl @[to_additive, simp] lemma hom_quotient_zpow_of_hom_comp : hom_quotient_zpow_of_hom (f.comp g) n = (hom_quotient_zpow_of_hom f n).comp (hom_quotient_zpow_of_hom g n) := monoid_hom_ext _ rfl @[to_additive, simp] lemma hom_quotient_zpow_of_hom_comp_of_right_inverse (i : function.right_inverse g f) : (hom_quotient_zpow_of_hom f n).comp (hom_quotient_zpow_of_hom g n) = monoid_hom.id _ := monoid_hom_ext _ $ monoid_hom.ext $ λ x, congr_arg coe $ i x /-- The equivalence of quotients by powers of an integer induced by a group isomorphism. -/ @[to_additive "The equivalence of quotients by multiples of an integer induced by an additive group isomorphism."] def equiv_quotient_zpow_of_equiv : A ⧸ (zpow_group_hom n : A →* A).range ≃* B ⧸ (zpow_group_hom n : B →* B).range := monoid_hom.to_mul_equiv _ _ (hom_quotient_zpow_of_hom_comp_of_right_inverse e.symm e n e.left_inv) (hom_quotient_zpow_of_hom_comp_of_right_inverse e e.symm n e.right_inv) @[to_additive, simp] lemma equiv_quotient_zpow_of_equiv_refl : mul_equiv.refl (A ⧸ (zpow_group_hom n : A →* A).range) = equiv_quotient_zpow_of_equiv (mul_equiv.refl A) n := by { ext x, rw [← quotient.out_eq' x], refl } @[to_additive, simp] lemma equiv_quotient_zpow_of_equiv_symm : (equiv_quotient_zpow_of_equiv e n).symm = equiv_quotient_zpow_of_equiv e.symm n := rfl @[to_additive, simp] lemma equiv_quotient_zpow_of_equiv_trans : (equiv_quotient_zpow_of_equiv e n).trans (equiv_quotient_zpow_of_equiv d n) = equiv_quotient_zpow_of_equiv (e.trans d) n := by { ext x, rw [← quotient.out_eq' x], refl } end zpow section snd_isomorphism_thm open _root_.subgroup /-- **Noether's second isomorphism theorem**: given two subgroups `H` and `N` of a group `G`, where `N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(HN)/N`. -/ @[to_additive "The second isomorphism theorem: given two subgroups `H` and `N` of a group `G`, where `N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(H + N)/N`"] noncomputable def quotient_inf_equiv_prod_normal_quotient (H N : subgroup G) [N.normal] : H ⧸ ((H ⊓ N).comap H.subtype) ≃* _ ⧸ (N.comap (H ⊔ N).subtype) := /- φ is the natural homomorphism H →* (HN)/N. -/ let φ : H →* _ ⧸ (N.comap (H ⊔ N).subtype) := (mk' $ N.comap (H ⊔ N).subtype).comp (inclusion le_sup_left) in have φ_surjective : function.surjective φ := λ x, x.induction_on' $ begin rintro ⟨y, (hy : y ∈ ↑(H ⊔ N))⟩, rw mul_normal H N at hy, rcases hy with ⟨h, n, hh, hn, rfl⟩, use [h, hh], apply quotient.eq.mpr, change setoid.r _ _, rw left_rel_apply, change h⁻¹ * (h * n) ∈ N, rwa [←mul_assoc, inv_mul_self, one_mul], end, (equiv_quotient_of_eq (by simp [comap_comap, ←comap_ker])).trans (quotient_ker_equiv_of_surjective φ φ_surjective) end snd_isomorphism_thm section third_iso_thm variables (M : subgroup G) [nM : M.normal] include nM nN @[to_additive quotient_add_group.map_normal] instance map_normal : (M.map (quotient_group.mk' N)).normal := { conj_mem := begin rintro _ ⟨x, hx, rfl⟩ y, refine induction_on' y (λ y, ⟨y * x * y⁻¹, subgroup.normal.conj_mem nM x hx y, _⟩), simp only [mk'_apply, coe_mul, coe_inv] end } variables (h : N ≤ M) /-- The map from the third isomorphism theorem for groups: `(G / N) / (M / N) → G / M`. -/ @[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux "The map from the third isomorphism theorem for additive groups: `(A / N) / (M / N) → A / M`."] def quotient_quotient_equiv_quotient_aux : (G ⧸ N) ⧸ (M.map (mk' N)) →* G ⧸ M := lift (M.map (mk' N)) (map N M (monoid_hom.id G) h) (by { rintro _ ⟨x, hx, rfl⟩, rw map_mk' N M _ _ x, exact (quotient_group.eq_one_iff _).mpr hx }) @[simp, to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe] lemma quotient_quotient_equiv_quotient_aux_coe (x : G ⧸ N) : quotient_quotient_equiv_quotient_aux N M h x = quotient_group.map N M (monoid_hom.id G) h x := quotient_group.lift_mk' _ _ x @[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe_coe] lemma quotient_quotient_equiv_quotient_aux_coe_coe (x : G) : quotient_quotient_equiv_quotient_aux N M h (x : G ⧸ N) = x := quotient_group.lift_mk' _ _ x /-- **Noether's third isomorphism theorem** for groups: `(G / N) / (M / N) ≃ G / M`. -/ @[to_additive quotient_add_group.quotient_quotient_equiv_quotient "**Noether's third isomorphism theorem** for additive groups: `(A / N) / (M / N) ≃ A / M`."] def quotient_quotient_equiv_quotient : (G ⧸ N) ⧸ (M.map (quotient_group.mk' N)) ≃* G ⧸ M := monoid_hom.to_mul_equiv (quotient_quotient_equiv_quotient_aux N M h) (quotient_group.map _ _ (quotient_group.mk' N) (subgroup.le_comap_map _ _)) (by { ext, simp }) (by { ext, simp }) end third_iso_thm section trivial @[to_additive] lemma subsingleton_quotient_top : subsingleton (G ⧸ (⊤ : subgroup G)) := begin dsimp [has_quotient.quotient, subgroup.has_quotient, quotient], rw left_rel_eq, exact @trunc.subsingleton G, end /-- If the quotient by a subgroup gives a singleton then the subgroup is the whole group. -/ @[to_additive "If the quotient by an additive subgroup gives a singleton then the additive subgroup is the whole additive group."] lemma subgroup_eq_top_of_subsingleton (H : subgroup G) (h : subsingleton (G ⧸ H)) : H = ⊤ := top_unique $ λ x _, have this : 1⁻¹ * x ∈ H := quotient_group.eq.1 (subsingleton.elim _ _), by rwa [inv_one, one_mul] at this end trivial @[to_additive quotient_add_group.comap_comap_center] lemma comap_comap_center {H₁ : subgroup G} [H₁.normal] {H₂ : subgroup (G ⧸ H₁)} [H₂.normal] : (((subgroup.center ((G ⧸ H₁) ⧸ H₂))).comap (mk' H₂)).comap (mk' H₁) = (subgroup.center (G ⧸ H₂.comap (mk' H₁))).comap (mk' (H₂.comap (mk' H₁))) := begin ext x, simp only [mk'_apply, subgroup.mem_comap, subgroup.mem_center_iff, forall_coe, ← coe_mul, eq_iff_div_mem, coe_div] end end quotient_group namespace group open_locale classical open quotient_group subgroup variables {F G H : Type u} [group F] [group G] [group H] [fintype F] [fintype H] variables (f : F →* G) (g : G →* H) /-- If `F` and `H` are finite such that `ker(G →* H) ≤ im(F →* G)`, then `G` is finite. -/ @[to_additive "If `F` and `H` are finite such that `ker(G →+ H) ≤ im(F →+ G)`, then `G` is finite."] noncomputable def fintype_of_ker_le_range (h : g.ker ≤ f.range) : fintype G := @fintype.of_equiv _ _ (@prod.fintype _ _ (fintype.of_injective _ $ ker_lift_injective g) $ fintype.of_injective _ $ inclusion_injective h) group_equiv_quotient_times_subgroup.symm /-- If `F` and `H` are finite such that `ker(G →* H) = im(F →* G)`, then `G` is finite. -/ @[to_additive "If `F` and `H` are finite such that `ker(G →+ H) = im(F →+ G)`, then `G` is finite."] noncomputable def fintype_of_ker_eq_range (h : g.ker = f.range) : fintype G := fintype_of_ker_le_range _ _ h.le /-- If `ker(G →* H)` and `H` are finite, then `G` is finite. -/ @[to_additive "If `ker(G →+ H)` and `H` are finite, then `G` is finite."] noncomputable def fintype_of_ker_of_codom [fintype g.ker] : fintype G := fintype_of_ker_le_range ((top_equiv : _ ≃* G).to_monoid_hom.comp $ inclusion le_top) g $ λ x hx, ⟨⟨x, hx⟩, rfl⟩ /-- If `F` and `coker(F →* G)` are finite, then `G` is finite. -/ @[to_additive "If `F` and `coker(F →+ G)` are finite, then `G` is finite."] noncomputable def fintype_of_dom_of_coker [normal f.range] [fintype $ G ⧸ f.range] : fintype G := fintype_of_ker_le_range _ (mk' f.range) $ λ x, (eq_one_iff x).mp end group