/- Copyright (c) 2018 . All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import data.zmod.basic import group_theory.index import group_theory.group_action.conj_act import group_theory.group_action.quotient import group_theory.perm.cycle.type import group_theory.specific_groups.cyclic import tactic.interval_cases /-! # p-groups This file contains a proof that if `G` is a `p`-group acting on a finite set `α`, then the number of fixed points of the action is congruent mod `p` to the cardinality of `α`. It also contains proofs of some corollaries of this lemma about existence of fixed points. -/ open_locale big_operators open fintype mul_action variables (p : ℕ) (G : Type*) [group G] /-- A p-group is a group in which every element has prime power order -/ def is_p_group : Prop := ∀ g : G, ∃ k : ℕ, g ^ (p ^ k) = 1 variables {p} {G} namespace is_p_group lemma iff_order_of [hp : fact p.prime] : is_p_group p G ↔ ∀ g : G, ∃ k : ℕ, order_of g = p ^ k := forall_congr (λ g, ⟨λ ⟨k, hk⟩, exists_imp_exists (by exact λ j, Exists.snd) ((nat.dvd_prime_pow hp.out).mp (order_of_dvd_of_pow_eq_one hk)), exists_imp_exists (λ k hk, by rw [←hk, pow_order_of_eq_one])⟩) lemma of_card [fintype G] {n : ℕ} (hG : card G = p ^ n) : is_p_group p G := λ g, ⟨n, by rw [←hG, pow_card_eq_one]⟩ lemma of_bot : is_p_group p (⊥ : subgroup G) := of_card (subgroup.card_bot.trans (pow_zero p).symm) lemma iff_card [fact p.prime] [fintype G] : is_p_group p G ↔ ∃ n : ℕ, card G = p ^ n := begin have hG : card G ≠ 0 := card_ne_zero, refine ⟨λ h, _, λ ⟨n, hn⟩, of_card hn⟩, suffices : ∀ q ∈ nat.factors (card G), q = p, { use (card G).factors.length, rw [←list.prod_repeat, ←list.eq_repeat_of_mem this, nat.prod_factors hG] }, intros q hq, obtain ⟨hq1, hq2⟩ := (nat.mem_factors hG).mp hq, haveI : fact q.prime := ⟨hq1⟩, obtain ⟨g, hg⟩ := exists_prime_order_of_dvd_card q hq2, obtain ⟨k, hk⟩ := (iff_order_of.mp h) g, exact (hq1.pow_eq_iff.mp (hg.symm.trans hk).symm).1.symm, end section G_is_p_group variables (hG : is_p_group p G) include hG lemma of_injective {H : Type*} [group H] (ϕ : H →* G) (hϕ : function.injective ϕ) : is_p_group p H := begin simp_rw [is_p_group, ←hϕ.eq_iff, ϕ.map_pow, ϕ.map_one], exact λ h, hG (ϕ h), end lemma to_subgroup (H : subgroup G) : is_p_group p H := hG.of_injective H.subtype subtype.coe_injective lemma of_surjective {H : Type*} [group H] (ϕ : G →* H) (hϕ : function.surjective ϕ) : is_p_group p H := begin refine λ h, exists.elim (hϕ h) (λ g hg, exists_imp_exists (λ k hk, _) (hG g)), rw [←hg, ←ϕ.map_pow, hk, ϕ.map_one], end lemma to_quotient (H : subgroup G) [H.normal] : is_p_group p (G ⧸ H) := hG.of_surjective (quotient_group.mk' H) quotient.surjective_quotient_mk' lemma of_equiv {H : Type*} [group H] (ϕ : G ≃* H) : is_p_group p H := hG.of_surjective ϕ.to_monoid_hom ϕ.surjective variables [hp : fact p.prime] include hp lemma index (H : subgroup G) [finite (G ⧸ H)] : ∃ n : ℕ, H.index = p ^ n := begin casesI nonempty_fintype (G ⧸ H), obtain ⟨n, hn⟩ := iff_card.mp (hG.to_quotient H.normal_core), obtain ⟨k, hk1, hk2⟩ := (nat.dvd_prime_pow hp.out).mp ((congr_arg _ (H.normal_core.index_eq_card.trans hn)).mp (subgroup.index_dvd_of_le H.normal_core_le)), exact ⟨k, hk2⟩, end lemma nontrivial_iff_card [fintype G] : nontrivial G ↔ ∃ n > 0, card G = p ^ n := ⟨λ hGnt, let ⟨k, hk⟩ := iff_card.1 hG in ⟨k, nat.pos_of_ne_zero $ λ hk0, by rw [hk0, pow_zero] at hk; exactI fintype.one_lt_card.ne' hk, hk⟩, λ ⟨k, hk0, hk⟩, one_lt_card_iff_nontrivial.1 $ hk.symm ▸ one_lt_pow (fact.out p.prime).one_lt (ne_of_gt hk0)⟩ variables {α : Type*} [mul_action G α] lemma card_orbit (a : α) [fintype (orbit G a)] : ∃ n : ℕ, card (orbit G a) = p ^ n := begin let ϕ := orbit_equiv_quotient_stabilizer G a, haveI := fintype.of_equiv (orbit G a) ϕ, rw [card_congr ϕ, ←subgroup.index_eq_card], exact hG.index (stabilizer G a), end variables (α) [fintype α] /-- If `G` is a `p`-group acting on a finite set `α`, then the number of fixed points of the action is congruent mod `p` to the cardinality of `α` -/ lemma card_modeq_card_fixed_points [fintype (fixed_points G α)] : card α ≡ card (fixed_points G α) [MOD p] := begin classical, calc card α = card (Σ y : quotient (orbit_rel G α), {x // quotient.mk' x = y}) : card_congr (equiv.sigma_fiber_equiv (@quotient.mk' _ (orbit_rel G α))).symm ... = ∑ a : quotient (orbit_rel G α), card {x // quotient.mk' x = a} : card_sigma _ ... ≡ ∑ a : fixed_points G α, 1 [MOD p] : _ ... = _ : by simp; refl, rw [←zmod.eq_iff_modeq_nat p, nat.cast_sum, nat.cast_sum], have key : ∀ x, card {y // (quotient.mk' y : quotient (orbit_rel G α)) = quotient.mk' x} = card (orbit G x) := λ x, by simp only [quotient.eq']; congr, refine eq.symm (finset.sum_bij_ne_zero (λ a _ _, quotient.mk' a.1) (λ _ _ _, finset.mem_univ _) (λ a₁ a₂ _ _ _ _ h, subtype.eq ((mem_fixed_points' α).mp a₂.2 a₁.1 (quotient.exact' h))) (λ b, quotient.induction_on' b (λ b _ hb, _)) (λ a ha _, by { rw [key, mem_fixed_points_iff_card_orbit_eq_one.mp a.2] })), obtain ⟨k, hk⟩ := hG.card_orbit b, have : k = 0 := nat.le_zero_iff.1 (nat.le_of_lt_succ (lt_of_not_ge (mt (pow_dvd_pow p) (by rwa [pow_one, ←hk, ←nat.modeq_zero_iff_dvd, ←zmod.eq_iff_modeq_nat, ←key, nat.cast_zero])))), exact ⟨⟨b, mem_fixed_points_iff_card_orbit_eq_one.2 $ by rw [hk, this, pow_zero]⟩, finset.mem_univ _, (ne_of_eq_of_ne nat.cast_one one_ne_zero), rfl⟩, end /-- If a p-group acts on `α` and the cardinality of `α` is not a multiple of `p` then the action has a fixed point. -/ lemma nonempty_fixed_point_of_prime_not_dvd_card (hpα : ¬ p ∣ card α) [finite (fixed_points G α)] : (fixed_points G α).nonempty := @set.nonempty_of_nonempty_subtype _ _ begin casesI nonempty_fintype (fixed_points G α), rw [←card_pos_iff, pos_iff_ne_zero], contrapose! hpα, rw [←nat.modeq_zero_iff_dvd, ←hpα], exact hG.card_modeq_card_fixed_points α, end /-- If a p-group acts on `α` and the cardinality of `α` is a multiple of `p`, and the action has one fixed point, then it has another fixed point. -/ lemma exists_fixed_point_of_prime_dvd_card_of_fixed_point (hpα : p ∣ card α) {a : α} (ha : a ∈ fixed_points G α) : ∃ b, b ∈ fixed_points G α ∧ a ≠ b := begin casesI nonempty_fintype (fixed_points G α), have hpf : p ∣ card (fixed_points G α) := nat.modeq_zero_iff_dvd.mp ((hG.card_modeq_card_fixed_points α).symm.trans hpα.modeq_zero_nat), have hα : 1 < card (fixed_points G α) := (fact.out p.prime).one_lt.trans_le (nat.le_of_dvd (card_pos_iff.2 ⟨⟨a, ha⟩⟩) hpf), exact let ⟨⟨b, hb⟩, hba⟩ := exists_ne_of_one_lt_card hα ⟨a, ha⟩ in ⟨b, hb, λ hab, hba (by simp_rw [hab])⟩ end lemma center_nontrivial [nontrivial G] [finite G] : nontrivial (subgroup.center G) := begin classical, casesI nonempty_fintype G, have := (hG.of_equiv conj_act.to_conj_act).exists_fixed_point_of_prime_dvd_card_of_fixed_point G, rw conj_act.fixed_points_eq_center at this, obtain ⟨g, hg⟩ := this _ (subgroup.center G).one_mem, { exact ⟨⟨1, ⟨g, hg.1⟩, mt subtype.ext_iff.mp hg.2⟩⟩ }, { obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp infer_instance, exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0) }, end lemma bot_lt_center [nontrivial G] [finite G] : ⊥ < subgroup.center G := begin haveI := center_nontrivial hG, casesI nonempty_fintype G, classical, exact bot_lt_iff_ne_bot.mpr ((subgroup.center G).one_lt_card_iff_ne_bot.mp fintype.one_lt_card), end end G_is_p_group lemma to_le {H K : subgroup G} (hK : is_p_group p K) (hHK : H ≤ K) : is_p_group p H := hK.of_injective (subgroup.inclusion hHK) (λ a b h, subtype.ext (show _, from subtype.ext_iff.mp h)) lemma to_inf_left {H K : subgroup G} (hH : is_p_group p H) : is_p_group p (H ⊓ K : subgroup G) := hH.to_le inf_le_left lemma to_inf_right {H K : subgroup G} (hK : is_p_group p K) : is_p_group p (H ⊓ K : subgroup G) := hK.to_le inf_le_right lemma map {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K] (ϕ : G →* K) : is_p_group p (H.map ϕ) := begin rw [←H.subtype_range, monoid_hom.map_range], exact hH.of_surjective (ϕ.restrict H).range_restrict (ϕ.restrict H).range_restrict_surjective, end lemma comap_of_ker_is_p_group {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K] (ϕ : K →* G) (hϕ : is_p_group p ϕ.ker) : is_p_group p (H.comap ϕ) := begin intro g, obtain ⟨j, hj⟩ := hH ⟨ϕ g.1, g.2⟩, rw [subtype.ext_iff, H.coe_pow, subtype.coe_mk, ←ϕ.map_pow] at hj, obtain ⟨k, hk⟩ := hϕ ⟨g.1 ^ p ^ j, hj⟩, rwa [subtype.ext_iff, ϕ.ker.coe_pow, subtype.coe_mk, ←pow_mul, ←pow_add] at hk, exact ⟨j + k, by rwa [subtype.ext_iff, (H.comap ϕ).coe_pow]⟩, end lemma ker_is_p_group_of_injective {K : Type*} [group K] {ϕ : K →* G} (hϕ : function.injective ϕ) : is_p_group p ϕ.ker := (congr_arg (λ Q : subgroup K, is_p_group p Q) (ϕ.ker_eq_bot_iff.mpr hϕ)).mpr is_p_group.of_bot lemma comap_of_injective {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K] (ϕ : K →* G) (hϕ : function.injective ϕ) : is_p_group p (H.comap ϕ) := hH.comap_of_ker_is_p_group ϕ (ker_is_p_group_of_injective hϕ) lemma comap_subtype {H : subgroup G} (hH : is_p_group p H) {K : subgroup G} : is_p_group p (H.comap K.subtype) := hH.comap_of_injective K.subtype subtype.coe_injective lemma to_sup_of_normal_right {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K) [K.normal] : is_p_group p (H ⊔ K : subgroup G) := begin rw [←quotient_group.ker_mk K, ←subgroup.comap_map_eq], apply (hH.map (quotient_group.mk' K)).comap_of_ker_is_p_group, rwa quotient_group.ker_mk, end lemma to_sup_of_normal_left {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K) [H.normal] : is_p_group p (H ⊔ K : subgroup G) := (congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right hK hH) lemma to_sup_of_normal_right' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K) (hHK : H ≤ K.normalizer) : is_p_group p (H ⊔ K : subgroup G) := let hHK' := to_sup_of_normal_right (hH.of_equiv (subgroup.comap_subtype_equiv_of_le hHK).symm) (hK.of_equiv (subgroup.comap_subtype_equiv_of_le subgroup.le_normalizer).symm) in ((congr_arg (λ H : subgroup K.normalizer, is_p_group p H) (subgroup.sup_subgroup_of_eq hHK subgroup.le_normalizer)).mp hHK').of_equiv (subgroup.comap_subtype_equiv_of_le (sup_le hHK subgroup.le_normalizer)) lemma to_sup_of_normal_left' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K) (hHK : K ≤ H.normalizer) : is_p_group p (H ⊔ K : subgroup G) := (congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right' hK hH hHK) /-- finite p-groups with different p have coprime orders -/ lemma coprime_card_of_ne {G₂ : Type*} [group G₂] (p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂) (H₁ : subgroup G) (H₂ : subgroup G₂) [fintype H₁] [fintype H₂] (hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) : nat.coprime (fintype.card H₁) (fintype.card H₂) := begin obtain ⟨n₁, heq₁⟩ := iff_card.mp hH₁, rw heq₁, clear heq₁, obtain ⟨n₂, heq₂⟩ := iff_card.mp hH₂, rw heq₂, clear heq₂, exact nat.coprime_pow_primes _ _ (hp₁.elim) (hp₂.elim) hne, end /-- p-groups with different p are disjoint -/ lemma disjoint_of_ne (p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂) (H₁ H₂ : subgroup G) (hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) : disjoint H₁ H₂ := begin rintro x ⟨hx₁, hx₂⟩, rw subgroup.mem_bot, obtain ⟨n₁, hn₁⟩ := iff_order_of.mp hH₁ ⟨x, hx₁⟩, obtain ⟨n₂, hn₂⟩ := iff_order_of.mp hH₂ ⟨x, hx₂⟩, rw [← order_of_subgroup, subgroup.coe_mk] at hn₁ hn₂, have : p₁ ^ n₁ = p₂ ^ n₂, by rw [← hn₁, ← hn₂], have : n₁ = 0, { contrapose! hne with h, rw ← associated_iff_eq at this ⊢, exact associated.of_pow_associated_of_prime (nat.prime_iff.mp hp₁.elim) (nat.prime_iff.mp hp₂.elim) (ne.bot_lt h) this }, simpa [this] using hn₁, end section p2comm variables [fintype G] [fact p.prime] {n : ℕ} (hGpn : card G = p ^ n) include hGpn open subgroup /-- The cardinality of the `center` of a `p`-group is `p ^ k` where `k` is positive. -/ lemma card_center_eq_prime_pow (hn : 0 < n) [fintype (center G)] : ∃ k > 0, card (center G) = p ^ k := begin have hcG := to_subgroup (of_card hGpn) (center G), rcases iff_card.1 hcG with ⟨k, hk⟩, haveI : nontrivial G := (nontrivial_iff_card $ of_card hGpn).2 ⟨n, hn, hGpn⟩, exact (nontrivial_iff_card hcG).mp (center_nontrivial (of_card hGpn)), end omit hGpn /-- The quotient by the center of a group of cardinality `p ^ 2` is cyclic. -/ lemma cyclic_center_quotient_of_card_eq_prime_sq (hG : card G = p ^ 2) : is_cyclic (G ⧸ (center G)) := begin classical, rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩, rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG, have hk2 := (nat.pow_dvd_pow_iff_le_right (fact.out p.prime).one_lt).1 ⟨_, hG.symm⟩, interval_cases k, { rw [sq, pow_one, nat.mul_right_inj (fact.out p.prime).pos] at hG, exact is_cyclic_of_prime_card hG }, { exact @is_cyclic_of_subsingleton _ _ ⟨fintype.card_le_one_iff.1 ((nat.mul_right_inj (pow_pos (fact.out p.prime).pos 2)).1 (hG.trans (mul_one (p ^ 2)).symm)).le⟩ }, end /-- A group of order `p ^ 2` is commutative. See also `is_p_group.comm_group_of_card_eq_prime_sq` for the `comm_group` instance. -/ def comm_group_of_card_eq_prime_sq (hG : card G = p ^ 2) : comm_group G := @comm_group_of_cycle_center_quotient _ _ _ _ (cyclic_center_quotient_of_card_eq_prime_sq hG) _ (quotient_group.ker_mk (center G)).le /-- A group of order `p ^ 2` is commutative. See also `is_p_group.commutative_of_card_eq_prime_sq` for just the proof that `∀ a b, a * b = b * a` -/ lemma commutative_of_card_eq_prime_sq (hG : card G = p ^ 2) : ∀ a b : G, a * b = b * a := (comm_group_of_card_eq_prime_sq hG).mul_comm end p2comm end is_p_group