/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston -/ import group_theory.congruence import group_theory.submonoid.membership import algebra.group.units /-! # Localizations of commutative monoids Localizing a commutative ring at one of its submonoids does not rely on the ring's addition, so we can generalize localizations to commutative monoids. We characterize the localization of a commutative monoid `M` at a submonoid `S` up to isomorphism; that is, a commutative monoid `N` is the localization of `M` at `S` iff we can find a monoid homomorphism `f : M →* N` satisfying 3 properties: 1. For all `y ∈ S`, `f y` is a unit; 2. For all `z : N`, there exists `(x, y) : M × S` such that `z * f y = f x`; 3. For all `x, y : M`, `f x = f y` iff there exists `c ∈ S` such that `x * c = y * c`. Given such a localization map `f : M →* N`, we can define the surjection `localization_map.mk'` sending `(x, y) : M × S` to `f x * (f y)⁻¹`, and `localization_map.lift`, the homomorphism from `N` induced by a homomorphism from `M` which maps elements of `S` to invertible elements of the codomain. Similarly, given commutative monoids `P, Q`, a submonoid `T` of `P` and a localization map for `T` from `P` to `Q`, then a homomorphism `g : M →* P` such that `g(S) ⊆ T` induces a homomorphism of localizations, `localization_map.map`, from `N` to `Q`. We treat the special case of localizing away from an element in the sections `away_map` and `away`. We also define the quotient of `M × S` by the unique congruence relation (equivalence relation preserving a binary operation) `r` such that for any other congruence relation `s` on `M × S` satisfying '`∀ y ∈ S`, `(1, 1) ∼ (y, y)` under `s`', we have that `(x₁, y₁) ∼ (x₂, y₂)` by `s` whenever `(x₁, y₁) ∼ (x₂, y₂)` by `r`. We show this relation is equivalent to the standard localization relation. This defines the localization as a quotient type, `localization`, but the majority of subsequent lemmas in the file are given in terms of localizations up to isomorphism, using maps which satisfy the characteristic predicate. ## Implementation notes In maths it is natural to reason up to isomorphism, but in Lean we cannot naturally `rewrite` one structure with an isomorphic one; one way around this is to isolate a predicate characterizing a structure up to isomorphism, and reason about things that satisfy the predicate. The infimum form of the localization congruence relation is chosen as 'canonical' here, since it shortens some proofs. To apply a localization map `f` as a function, we use `f.to_map`, as coercions don't work well for this structure. To reason about the localization as a quotient type, use `mk_eq_monoid_of_mk'` and associated lemmas. These show the quotient map `mk : M → S → localization S` equals the surjection `localization_map.mk'` induced by the map `monoid_of : localization_map S (localization S)` (where `of` establishes the localization as a quotient type satisfies the characteristic predicate). The lemma `mk_eq_monoid_of_mk'` hence gives you access to the results in the rest of the file, which are about the `localization_map.mk'` induced by any localization map. ## Tags localization, monoid localization, quotient monoid, congruence relation, characteristic predicate, commutative monoid -/ namespace add_submonoid variables {M : Type*} [add_comm_monoid M] (S : add_submonoid M) (N : Type*) [add_comm_monoid N] /-- The type of add_monoid homomorphisms satisfying the characteristic predicate: if `f : M →+ N` satisfies this predicate, then `N` is isomorphic to the localization of `M` at `S`. -/ @[nolint has_nonempty_instance] structure localization_map extends add_monoid_hom M N := (map_add_units' : ∀ y : S, is_add_unit (to_fun y)) (surj' : ∀ z : N, ∃ x : M × S, z + to_fun x.2 = to_fun x.1) (eq_iff_exists' : ∀ x y, to_fun x = to_fun y ↔ ∃ c : S, x + c = y + c) /-- The add_monoid hom underlying a `localization_map` of `add_comm_monoid`s. -/ add_decl_doc localization_map.to_add_monoid_hom end add_submonoid section comm_monoid variables {M : Type*} [comm_monoid M] (S : submonoid M) (N : Type*) [comm_monoid N] {P : Type*} [comm_monoid P] namespace submonoid /-- The type of monoid homomorphisms satisfying the characteristic predicate: if `f : M →* N` satisfies this predicate, then `N` is isomorphic to the localization of `M` at `S`. -/ @[nolint has_nonempty_instance] structure localization_map extends monoid_hom M N := (map_units' : ∀ y : S, is_unit (to_fun y)) (surj' : ∀ z : N, ∃ x : M × S, z * to_fun x.2 = to_fun x.1) (eq_iff_exists' : ∀ x y, to_fun x = to_fun y ↔ ∃ c : S, x * c = y * c) attribute [to_additive add_submonoid.localization_map] submonoid.localization_map attribute [to_additive add_submonoid.localization_map.to_add_monoid_hom] submonoid.localization_map.to_monoid_hom /-- The monoid hom underlying a `localization_map`. -/ add_decl_doc localization_map.to_monoid_hom end submonoid namespace localization run_cmd to_additive.map_namespace `localization `add_localization /-- The congruence relation on `M × S`, `M` a `comm_monoid` and `S` a submonoid of `M`, whose quotient is the localization of `M` at `S`, defined as the unique congruence relation on `M × S` such that for any other congruence relation `s` on `M × S` where for all `y ∈ S`, `(1, 1) ∼ (y, y)` under `s`, we have that `(x₁, y₁) ∼ (x₂, y₂)` by `r` implies `(x₁, y₁) ∼ (x₂, y₂)` by `s`. -/ @[to_additive "The congruence relation on `M × S`, `M` an `add_comm_monoid` and `S` an `add_submonoid` of `M`, whose quotient is the localization of `M` at `S`, defined as the unique congruence relation on `M × S` such that for any other congruence relation `s` on `M × S` where for all `y ∈ S`, `(0, 0) ∼ (y, y)` under `s`, we have that `(x₁, y₁) ∼ (x₂, y₂)` by `r` implies `(x₁, y₁) ∼ (x₂, y₂)` by `s`."] def r (S : submonoid M) : con (M × S) := Inf {c | ∀ y : S, c 1 (y, y)} /-- An alternate form of the congruence relation on `M × S`, `M` a `comm_monoid` and `S` a submonoid of `M`, whose quotient is the localization of `M` at `S`. -/ @[to_additive "An alternate form of the congruence relation on `M × S`, `M` a `comm_monoid` and `S` a submonoid of `M`, whose quotient is the localization of `M` at `S`."] def r' : con (M × S) := begin refine { r := λ a b : M × S, ∃ c : S, a.1 * b.2 * c = b.1 * a.2 * c, iseqv := ⟨λ a, ⟨1, rfl⟩, λ a b ⟨c, hc⟩, ⟨c, hc.symm⟩, _⟩, .. }, { rintros a b c ⟨t₁, ht₁⟩ ⟨t₂, ht₂⟩, use b.2 * t₁ * t₂, simp only [submonoid.coe_mul], calc a.1 * c.2 * (b.2 * t₁ * t₂) = a.1 * b.2 * t₁ * c.2 * t₂ : by ac_refl ... = b.1 * c.2 * t₂ * a.2 * t₁ : by { rw ht₁, ac_refl } ... = c.1 * a.2 * (b.2 * t₁ * t₂) : by { rw ht₂, ac_refl } }, { rintros a b c d ⟨t₁, ht₁⟩ ⟨t₂, ht₂⟩, use t₁ * t₂, calc (a.1 * c.1) * (b.2 * d.2) * (t₁ * t₂) = (a.1 * b.2 * t₁) * (c.1 * d.2 * t₂) : by ac_refl ... = (b.1 * d.1) * (a.2 * c.2) * (t₁ * t₂) : by { rw [ht₁, ht₂], ac_refl } } end /-- The congruence relation used to localize a `comm_monoid` at a submonoid can be expressed equivalently as an infimum (see `localization.r`) or explicitly (see `localization.r'`). -/ @[to_additive "The additive congruence relation used to localize an `add_comm_monoid` at a submonoid can be expressed equivalently as an infimum (see `add_localization.r`) or explicitly (see `add_localization.r'`)."] theorem r_eq_r' : r S = r' S := le_antisymm (Inf_le $ λ _, ⟨1, by simp⟩) $ le_Inf $ λ b H ⟨p, q⟩ y ⟨t, ht⟩, begin rw [← mul_one (p, q), ← mul_one y], refine b.trans (b.mul (b.refl _) (H (y.2 * t))) _, convert b.symm (b.mul (b.refl y) (H (q * t))) using 1, rw [prod.mk_mul_mk, submonoid.coe_mul, ← mul_assoc, ht, mul_left_comm, mul_assoc], refl end variables {S} @[to_additive] lemma r_iff_exists {x y : M × S} : r S x y ↔ ∃ c : S, x.1 * y.2 * c = y.1 * x.2 * c := by rw r_eq_r' S; refl end localization /-- The localization of a `comm_monoid` at one of its submonoids (as a quotient type). -/ @[to_additive add_localization "The localization of an `add_comm_monoid` at one of its submonoids (as a quotient type)."] def localization := (localization.r S).quotient namespace localization @[to_additive] instance inhabited : inhabited (localization S) := con.quotient.inhabited /-- Multiplication in a localization is defined as `⟨a, b⟩ * ⟨c, d⟩ = ⟨a * c, b * d⟩`. -/ @[to_additive "Addition in an `add_localization` is defined as `⟨a, b⟩ + ⟨c, d⟩ = ⟨a + c, b + d⟩`. Should not be confused with the ring localization counterpart `localization.add`, which maps `⟨a, b⟩ + ⟨c, d⟩` to `⟨d * a + b * c, b * d⟩`.", irreducible] protected def mul : localization S → localization S → localization S := (r S).comm_monoid.mul @[to_additive] instance : has_mul (localization S) := ⟨localization.mul S⟩ /-- The identity element of a localization is defined as `⟨1, 1⟩`. -/ @[to_additive "The identity element of an `add_localization` is defined as `⟨0, 0⟩`. Should not be confused with the ring localization counterpart `localization.zero`, which is defined as `⟨0, 1⟩`.", irreducible] protected def one : localization S := (r S).comm_monoid.one @[to_additive] instance : has_one (localization S) := ⟨localization.one S⟩ /-- Exponentiation in a localization is defined as `⟨a, b⟩ ^ n = ⟨a ^ n, b ^ n⟩`. This is a separate `irreducible` def to ensure the elaborator doesn't waste its time trying to unify some huge recursive definition with itself, but unfolded one step less. -/ @[to_additive "Multiplication with a natural in an `add_localization` is defined as `n • ⟨a, b⟩ = ⟨n • a, n • b⟩`. This is a separate `irreducible` def to ensure the elaborator doesn't waste its time trying to unify some huge recursive definition with itself, but unfolded one step less.", irreducible] protected def npow : ℕ → localization S → localization S := (r S).comm_monoid.npow local attribute [semireducible] localization.mul localization.one localization.npow @[to_additive] instance : comm_monoid (localization S) := { mul := (*), one := 1, mul_assoc := show ∀ (x y z : localization S), x * y * z = x * (y * z), from (r S).comm_monoid.mul_assoc, mul_comm := show ∀ (x y : localization S), x * y = y * x, from (r S).comm_monoid.mul_comm, mul_one := show ∀ (x : localization S), x * 1 = x, from (r S).comm_monoid.mul_one, one_mul := show ∀ (x : localization S), 1 * x = x, from (r S).comm_monoid.one_mul, npow := localization.npow S, npow_zero' := show ∀ (x : localization S), localization.npow S 0 x = 1, from pow_zero, npow_succ' := show ∀ (n : ℕ) (x : localization S), localization.npow S n.succ x = x * localization.npow S n x, from λ n x, pow_succ x n } variables {S} /-- Given a `comm_monoid` `M` and submonoid `S`, `mk` sends `x : M`, `y ∈ S` to the equivalence class of `(x, y)` in the localization of `M` at `S`. -/ @[to_additive "Given an `add_comm_monoid` `M` and submonoid `S`, `mk` sends `x : M`, `y ∈ S` to the equivalence class of `(x, y)` in the localization of `M` at `S`."] def mk (x : M) (y : S) : localization S := (r S).mk' (x, y) @[to_additive] theorem mk_eq_mk_iff {a c : M} {b d : S} : mk a b = mk c d ↔ r S ⟨a, b⟩ ⟨c, d⟩ := (r S).eq universes u /-- Dependent recursion principle for localizations: given elements `f a b : p (mk a b)` for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d` (wih the correct coercions), then `f` is defined on the whole `localization S`. -/ @[elab_as_eliminator, to_additive "Dependent recursion principle for `add_localizations`: given elements `f a b : p (mk a b)` for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d` (wih the correct coercions), then `f` is defined on the whole `add_localization S`."] def rec {p : localization S → Sort u} (f : ∀ (a : M) (b : S), p (mk a b)) (H : ∀ {a c : M} {b d : S} (h : r S (a, b) (c, d)), (eq.rec (f a b) (mk_eq_mk_iff.mpr h) : p (mk c d)) = f c d) (x) : p x := quot.rec (λ y, eq.rec (f y.1 y.2) (prod.mk.eta : (y.1, y.2) = y)) (λ y z h, by { cases y, cases z, exact H h }) x attribute [irreducible] localization @[to_additive] lemma mk_mul (a c : M) (b d : S) : mk a b * mk c d = mk (a * c) (b * d) := rfl @[to_additive] lemma mk_one : mk 1 (1 : S) = 1 := rfl @[to_additive] lemma mk_pow (n : ℕ) (a : M) (b : S) : (mk a b) ^ n = mk (a ^ n) (b ^ n) := rfl @[simp, to_additive] lemma rec_mk {p : localization S → Sort u} (f : ∀ (a : M) (b : S), p (mk a b)) (H) (a : M) (b : S) : (rec f H (mk a b) : p (mk a b)) = f a b := rfl /-- Non-dependent recursion principle for localizations: given elements `f a b : p` for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d`, then `f` is defined on the whole `localization S`. -/ @[elab_as_eliminator, to_additive "Non-dependent recursion principle for `add_localizations`: given elements `f a b : p` for all `a b`, such that `r S (a, b) (c, d)` implies `f a b = f c d`, then `f` is defined on the whole `localization S`."] def lift_on {p : Sort u} (x : localization S) (f : M → S → p) (H : ∀ {a c : M} {b d : S} (h : r S (a, b) (c, d)), f a b = f c d) : p := rec f (λ a c b d h, by rw [eq_rec_constant, H h]) x @[to_additive] lemma lift_on_mk {p : Sort u} (f : ∀ (a : M) (b : S), p) (H) (a : M) (b : S) : lift_on (mk a b) f H = f a b := rfl @[elab_as_eliminator, to_additive] theorem ind {p : localization S → Prop} (H : ∀ (y : M × S), p (mk y.1 y.2)) (x) : p x := rec (λ a b, H (a, b)) (λ _ _ _ _ _, rfl) x @[elab_as_eliminator, to_additive] theorem induction_on {p : localization S → Prop} (x) (H : ∀ (y : M × S), p (mk y.1 y.2)) : p x := ind H x /-- Non-dependent recursion principle for localizations: given elements `f x y : p` for all `x` and `y`, such that `r S x x'` and `r S y y'` implies `f x y = f x' y'`, then `f` is defined on the whole `localization S`. -/ @[elab_as_eliminator, to_additive "Non-dependent recursion principle for localizations: given elements `f x y : p` for all `x` and `y`, such that `r S x x'` and `r S y y'` implies `f x y = f x' y'`, then `f` is defined on the whole `localization S`."] def lift_on₂ {p : Sort u} (x y : localization S) (f : M → S → M → S → p) (H : ∀ {a a' b b' c c' d d'} (hx : r S (a, b) (a', b')) (hy : r S (c, d) (c', d')), f a b c d = f a' b' c' d') : p := lift_on x (λ a b, lift_on y (f a b) (λ c c' d d' hy, H ((r S).refl _) hy)) (λ a a' b b' hx, induction_on y (λ ⟨c, d⟩, H hx ((r S).refl _))) @[to_additive] lemma lift_on₂_mk {p : Sort*} (f : M → S → M → S → p) (H) (a c : M) (b d : S) : lift_on₂ (mk a b) (mk c d) f H = f a b c d := rfl @[elab_as_eliminator, to_additive] theorem induction_on₂ {p : localization S → localization S → Prop} (x y) (H : ∀ (x y : M × S), p (mk x.1 x.2) (mk y.1 y.2)) : p x y := induction_on x $ λ x, induction_on y $ H x @[elab_as_eliminator, to_additive] theorem induction_on₃ {p : localization S → localization S → localization S → Prop} (x y z) (H : ∀ (x y z : M × S), p (mk x.1 x.2) (mk y.1 y.2) (mk z.1 z.2)) : p x y z := induction_on₂ x y $ λ x y, induction_on z $ H x y @[to_additive] lemma one_rel (y : S) : r S 1 (y, y) := λ b hb, hb y @[to_additive] theorem r_of_eq {x y : M × S} (h : y.1 * x.2 = x.1 * y.2) : r S x y := r_iff_exists.2 ⟨1, by rw h⟩ @[to_additive] lemma mk_self (a : S) : mk (a : M) a = 1 := by { symmetry, rw [← mk_one, mk_eq_mk_iff], exact one_rel a } section scalar variables {R R₁ R₂ : Type*} /-- Scalar multiplication in a monoid localization is defined as `c • ⟨a, b⟩ = ⟨c • a, b⟩`. -/ @[irreducible] protected def smul [has_smul R M] [is_scalar_tower R M M] (c : R) (z : localization S) : localization S := localization.lift_on z (λ a b, mk (c • a) b) $ λ a a' b b' h, mk_eq_mk_iff.2 begin cases b with b hb, cases b' with b' hb', rw r_eq_r' at h ⊢, cases h with t ht, use t, simp only [smul_mul_assoc, ht] end instance [has_smul R M] [is_scalar_tower R M M] : has_smul R (localization S) := { smul := localization.smul } lemma smul_mk [has_smul R M] [is_scalar_tower R M M] (c : R) (a b) : c • (mk a b : localization S) = mk (c • a) b := by { unfold has_smul.smul localization.smul, apply lift_on_mk } instance [has_smul R₁ M] [has_smul R₂ M] [is_scalar_tower R₁ M M] [is_scalar_tower R₂ M M] [smul_comm_class R₁ R₂ M] : smul_comm_class R₁ R₂ (localization S) := { smul_comm := λ s t, localization.ind $ prod.rec $ by exact λ r x, by simp only [smul_mk, smul_comm s t r] } instance [has_smul R₁ M] [has_smul R₂ M] [is_scalar_tower R₁ M M] [is_scalar_tower R₂ M M] [has_smul R₁ R₂] [is_scalar_tower R₁ R₂ M] : is_scalar_tower R₁ R₂ (localization S) := { smul_assoc := λ s t, localization.ind $ prod.rec $ by exact λ r x, by simp only [smul_mk, smul_assoc s t r] } instance smul_comm_class_right {R : Type*} [has_smul R M] [is_scalar_tower R M M] : smul_comm_class R (localization S) (localization S) := { smul_comm := λ s, localization.ind $ prod.rec $ by exact λ r₁ x₁, localization.ind $ prod.rec $ by exact λ r₂ x₂, by simp only [smul_mk, smul_eq_mul, mk_mul, mul_comm r₁, smul_mul_assoc] } instance is_scalar_tower_right {R : Type*} [has_smul R M] [is_scalar_tower R M M] : is_scalar_tower R (localization S) (localization S) := { smul_assoc := λ s, localization.ind $ prod.rec $ by exact λ r₁ x₁, localization.ind $ prod.rec $ by exact λ r₂ x₂, by simp only [smul_mk, smul_eq_mul, mk_mul, smul_mul_assoc] } instance [has_smul R M] [has_smul Rᵐᵒᵖ M] [is_scalar_tower R M M] [is_scalar_tower Rᵐᵒᵖ M M] [is_central_scalar R M] : is_central_scalar R (localization S) := { op_smul_eq_smul := λ s, localization.ind $ prod.rec $ by exact λ r x, by simp only [smul_mk, op_smul_eq_smul] } instance [monoid R] [mul_action R M] [is_scalar_tower R M M] : mul_action R (localization S) := { one_smul := localization.ind $ prod.rec $ by { intros, simp only [localization.smul_mk, one_smul] }, mul_smul := λ s₁ s₂, localization.ind $ prod.rec $ by { intros, simp only [localization.smul_mk, mul_smul] } } instance [monoid R] [mul_distrib_mul_action R M] [is_scalar_tower R M M] : mul_distrib_mul_action R (localization S) := { smul_one := λ s, by simp only [←localization.mk_one, localization.smul_mk, smul_one], smul_mul := λ s x y, localization.induction_on₂ x y $ prod.rec $ by exact λ r₁ x₁, prod.rec $ by exact λ r₂ x₂, by simp only [localization.smul_mk, localization.mk_mul, smul_mul']} end scalar end localization variables {S N} namespace monoid_hom /-- Makes a localization map from a `comm_monoid` hom satisfying the characteristic predicate. -/ @[to_additive "Makes a localization map from an `add_comm_monoid` hom satisfying the characteristic predicate."] def to_localization_map (f : M →* N) (H1 : ∀ y : S, is_unit (f y)) (H2 : ∀ z, ∃ x : M × S, z * f x.2 = f x.1) (H3 : ∀ x y, f x = f y ↔ ∃ c : S, x * c = y * c) : submonoid.localization_map S N := { map_units' := H1, surj' := H2, eq_iff_exists' := H3, .. f } end monoid_hom namespace submonoid namespace localization_map /-- Short for `to_monoid_hom`; used to apply a localization map as a function. -/ @[to_additive "Short for `to_add_monoid_hom`; used to apply a localization map as a function."] abbreviation to_map (f : localization_map S N) := f.to_monoid_hom @[ext, to_additive] lemma ext {f g : localization_map S N} (h : ∀ x, f.to_map x = g.to_map x) : f = g := by { rcases f with ⟨⟨⟩⟩, rcases g with ⟨⟨⟩⟩, simp only, exact funext h, } @[to_additive] lemma ext_iff {f g : localization_map S N} : f = g ↔ ∀ x, f.to_map x = g.to_map x := ⟨λ h x, h ▸ rfl, ext⟩ @[to_additive] lemma to_map_injective : function.injective (@localization_map.to_map _ _ S N _) := λ _ _ h, ext $ monoid_hom.ext_iff.1 h @[to_additive] lemma map_units (f : localization_map S N) (y : S) : is_unit (f.to_map y) := f.2 y @[to_additive] lemma surj (f : localization_map S N) (z : N) : ∃ x : M × S, z * f.to_map x.2 = f.to_map x.1 := f.3 z @[to_additive] lemma eq_iff_exists (f : localization_map S N) {x y} : f.to_map x = f.to_map y ↔ ∃ c : S, x * c = y * c := f.4 x y /-- Given a localization map `f : M →* N`, a section function sending `z : N` to some `(x, y) : M × S` such that `f x * (f y)⁻¹ = z`. -/ @[to_additive "Given a localization map `f : M →+ N`, a section function sending `z : N` to some `(x, y) : M × S` such that `f x - f y = z`."] noncomputable def sec (f : localization_map S N) (z : N) : M × S := classical.some $ f.surj z @[to_additive] lemma sec_spec {f : localization_map S N} (z : N) : z * f.to_map (f.sec z).2 = f.to_map (f.sec z).1 := classical.some_spec $ f.surj z @[to_additive] lemma sec_spec' {f : localization_map S N} (z : N) : f.to_map (f.sec z).1 = f.to_map (f.sec z).2 * z := by rw [mul_comm, sec_spec] /-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that `f(S) ⊆ Nˣ`, for all `w : M, z : N` and `y ∈ S`, we have `w * (f y)⁻¹ = z ↔ w = f y * z`. -/ @[to_additive "Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that `f(S) ⊆ add_units N`, for all `w : M, z : N` and `y ∈ S`, we have `w - f y = z ↔ w = f y + z`."] lemma mul_inv_left {f : M →* N} (h : ∀ y : S, is_unit (f y)) (y : S) (w z) : w * ↑(is_unit.lift_right (f.restrict S) h y)⁻¹ = z ↔ w = f y * z := by rw mul_comm; convert units.inv_mul_eq_iff_eq_mul _; exact (is_unit.coe_lift_right (f.restrict S) h _).symm /-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that `f(S) ⊆ Nˣ`, for all `w : M, z : N` and `y ∈ S`, we have `z = w * (f y)⁻¹ ↔ z * f y = w`. -/ @[to_additive "Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that `f(S) ⊆ add_units N`, for all `w : M, z : N` and `y ∈ S`, we have `z = w - f y ↔ z + f y = w`."] lemma mul_inv_right {f : M →* N} (h : ∀ y : S, is_unit (f y)) (y : S) (w z) : z = w * ↑(is_unit.lift_right (f.restrict S) h y)⁻¹ ↔ z * f y = w := by rw [eq_comm, mul_inv_left h, mul_comm, eq_comm] /-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that `f(S) ⊆ Nˣ`, for all `x₁ x₂ : M` and `y₁, y₂ ∈ S`, we have `f x₁ * (f y₁)⁻¹ = f x₂ * (f y₂)⁻¹ ↔ f (x₁ * y₂) = f (x₂ * y₁)`. -/ @[simp, to_additive "Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that `f(S) ⊆ add_units N`, for all `x₁ x₂ : M` and `y₁, y₂ ∈ S`, we have `f x₁ - f y₁ = f x₂ - f y₂ ↔ f (x₁ + y₂) = f (x₂ + y₁)`."] lemma mul_inv {f : M →* N} (h : ∀ y : S, is_unit (f y)) {x₁ x₂} {y₁ y₂ : S} : f x₁ * ↑(is_unit.lift_right (f.restrict S) h y₁)⁻¹ = f x₂ * ↑(is_unit.lift_right (f.restrict S) h y₂)⁻¹ ↔ f (x₁ * y₂) = f (x₂ * y₁) := by rw [mul_inv_right h, mul_assoc, mul_comm _ (f y₂), ←mul_assoc, mul_inv_left h, mul_comm x₂, f.map_mul, f.map_mul] /-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that `f(S) ⊆ Nˣ`, for all `y, z ∈ S`, we have `(f y)⁻¹ = (f z)⁻¹ → f y = f z`. -/ @[to_additive "Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that `f(S) ⊆ add_units N`, for all `y, z ∈ S`, we have `- (f y) = - (f z) → f y = f z`."] lemma inv_inj {f : M →* N} (hf : ∀ y : S, is_unit (f y)) {y z} (h : (is_unit.lift_right (f.restrict S) hf y)⁻¹ = (is_unit.lift_right (f.restrict S) hf z)⁻¹) : f y = f z := by rw [←mul_one (f y), eq_comm, ←mul_inv_left hf y (f z) 1, h]; convert units.inv_mul _; exact (is_unit.coe_lift_right (f.restrict S) hf _).symm /-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that `f(S) ⊆ Nˣ`, for all `y ∈ S`, `(f y)⁻¹` is unique. -/ @[to_additive "Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that `f(S) ⊆ add_units N`, for all `y ∈ S`, `- (f y)` is unique."] lemma inv_unique {f : M →* N} (h : ∀ y : S, is_unit (f y)) {y : S} {z} (H : f y * z = 1) : ↑(is_unit.lift_right (f.restrict S) h y)⁻¹ = z := by rw [←one_mul ↑(_)⁻¹, mul_inv_left, ←H] variables (f : localization_map S N) @[to_additive] lemma map_right_cancel {x y} {c : S} (h : f.to_map (c * x) = f.to_map (c * y)) : f.to_map x = f.to_map y := begin rw [f.to_map.map_mul, f.to_map.map_mul] at h, cases f.map_units c with u hu, rw ←hu at h, exact (units.mul_right_inj u).1 h, end @[to_additive] lemma map_left_cancel {x y} {c : S} (h : f.to_map (x * c) = f.to_map (y * c)) : f.to_map x = f.to_map y := f.map_right_cancel $ by rw [mul_comm _ x, mul_comm _ y, h] /-- Given a localization map `f : M →* N`, the surjection sending `(x, y) : M × S` to `f x * (f y)⁻¹`. -/ @[to_additive "Given a localization map `f : M →+ N`, the surjection sending `(x, y) : M × S` to `f x - f y`."] noncomputable def mk' (f : localization_map S N) (x : M) (y : S) : N := f.to_map x * ↑(is_unit.lift_right (f.to_map.restrict S) f.map_units y)⁻¹ @[to_additive] lemma mk'_mul (x₁ x₂ : M) (y₁ y₂ : S) : f.mk' (x₁ * x₂) (y₁ * y₂) = f.mk' x₁ y₁ * f.mk' x₂ y₂ := (mul_inv_left f.map_units _ _ _).2 $ show _ = _ * (_ * _ * (_ * _)), by rw [←mul_assoc, ←mul_assoc, mul_inv_right f.map_units, mul_assoc, mul_assoc, mul_comm _ (f.to_map x₂), ←mul_assoc, ←mul_assoc, mul_inv_right f.map_units, submonoid.coe_mul, f.to_map.map_mul, f.to_map.map_mul]; ac_refl @[to_additive] lemma mk'_one (x) : f.mk' x (1 : S) = f.to_map x := by rw [mk', monoid_hom.map_one]; exact mul_one _ /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M`, for all `z : N` we have that if `x : M, y ∈ S` are such that `z * f y = f x`, then `f x * (f y)⁻¹ = z`. -/ @[simp, to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M`, for all `z : N` we have that if `x : M, y ∈ S` are such that `z + f y = f x`, then `f x - f y = z`."] lemma mk'_sec (z : N) : f.mk' (f.sec z).1 (f.sec z).2 = z := show _ * _ = _, by rw [←sec_spec, mul_inv_left, mul_comm] @[to_additive] lemma mk'_surjective (z : N) : ∃ x (y : S), f.mk' x y = z := ⟨(f.sec z).1, (f.sec z).2, f.mk'_sec z⟩ @[to_additive] lemma mk'_spec (x) (y : S) : f.mk' x y * f.to_map y = f.to_map x := show _ * _ * _ = _, by rw [mul_assoc, mul_comm _ (f.to_map y), ←mul_assoc, mul_inv_left, mul_comm] @[to_additive] lemma mk'_spec' (x) (y : S) : f.to_map y * f.mk' x y = f.to_map x := by rw [mul_comm, mk'_spec] @[to_additive] theorem eq_mk'_iff_mul_eq {x} {y : S} {z} : z = f.mk' x y ↔ z * f.to_map y = f.to_map x := ⟨λ H, by rw [H, mk'_spec], λ H, by erw [mul_inv_right, H]; refl⟩ @[to_additive] theorem mk'_eq_iff_eq_mul {x} {y : S} {z} : f.mk' x y = z ↔ f.to_map x = z * f.to_map y := by rw [eq_comm, eq_mk'_iff_mul_eq, eq_comm] @[to_additive] lemma mk'_eq_iff_eq {x₁ x₂} {y₁ y₂ : S} : f.mk' x₁ y₁ = f.mk' x₂ y₂ ↔ f.to_map (x₁ * y₂) = f.to_map (x₂ * y₁) := ⟨λ H, by rw [f.to_map.map_mul, f.mk'_eq_iff_eq_mul.1 H, mul_assoc, mul_comm (f.to_map _), ←mul_assoc, mk'_spec, f.to_map.map_mul], λ H, by rw [mk'_eq_iff_eq_mul, mk', mul_assoc, mul_comm _ (f.to_map y₁), ←mul_assoc, ←f.to_map.map_mul, ←H, f.to_map.map_mul, mul_inv_right f.map_units]⟩ @[to_additive] protected lemma eq {a₁ b₁} {a₂ b₂ : S} : f.mk' a₁ a₂ = f.mk' b₁ b₂ ↔ ∃ c : S, a₁ * b₂ * c = b₁ * a₂ * c := f.mk'_eq_iff_eq.trans $ f.eq_iff_exists @[to_additive] protected lemma eq' {a₁ b₁} {a₂ b₂ : S} : f.mk' a₁ a₂ = f.mk' b₁ b₂ ↔ localization.r S (a₁, a₂) (b₁, b₂) := by rw [f.eq, localization.r_iff_exists] @[to_additive] lemma eq_iff_eq (g : localization_map S P) {x y} : f.to_map x = f.to_map y ↔ g.to_map x = g.to_map y := f.eq_iff_exists.trans g.eq_iff_exists.symm @[to_additive] lemma mk'_eq_iff_mk'_eq (g : localization_map S P) {x₁ x₂} {y₁ y₂ : S} : f.mk' x₁ y₁ = f.mk' x₂ y₂ ↔ g.mk' x₁ y₁ = g.mk' x₂ y₂ := f.eq'.trans g.eq'.symm /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M`, for all `x₁ : M` and `y₁ ∈ S`, if `x₂ : M, y₂ ∈ S` are such that `f x₁ * (f y₁)⁻¹ * f y₂ = f x₂`, then there exists `c ∈ S` such that `x₁ * y₂ * c = x₂ * y₁ * c`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M`, for all `x₁ : M` and `y₁ ∈ S`, if `x₂ : M, y₂ ∈ S` are such that `(f x₁ - f y₁) + f y₂ = f x₂`, then there exists `c ∈ S` such that `x₁ + y₂ + c = x₂ + y₁ + c`."] lemma exists_of_sec_mk' (x) (y : S) : ∃ c : S, x * (f.sec $ f.mk' x y).2 * c = (f.sec $ f.mk' x y).1 * y * c := f.eq_iff_exists.1 $ f.mk'_eq_iff_eq.1 $ (mk'_sec _ _).symm @[to_additive] lemma mk'_eq_of_eq {a₁ b₁ : M} {a₂ b₂ : S} (H : b₁ * a₂ = a₁ * b₂) : f.mk' a₁ a₂ = f.mk' b₁ b₂ := f.mk'_eq_iff_eq.2 $ H ▸ rfl @[simp, to_additive] lemma mk'_self' (y : S) : f.mk' (y : M) y = 1 := show _ * _ = _, by rw [mul_inv_left, mul_one] @[simp, to_additive] lemma mk'_self (x) (H : x ∈ S) : f.mk' x ⟨x, H⟩ = 1 := by convert mk'_self' _ _; refl @[to_additive] lemma mul_mk'_eq_mk'_of_mul (x₁ x₂) (y : S) : f.to_map x₁ * f.mk' x₂ y = f.mk' (x₁ * x₂) y := by rw [←mk'_one, ←mk'_mul, one_mul] @[to_additive] lemma mk'_mul_eq_mk'_of_mul (x₁ x₂) (y : S) : f.mk' x₂ y * f.to_map x₁ = f.mk' (x₁ * x₂) y := by rw [mul_comm, mul_mk'_eq_mk'_of_mul] @[to_additive] lemma mul_mk'_one_eq_mk' (x) (y : S) : f.to_map x * f.mk' 1 y = f.mk' x y := by rw [mul_mk'_eq_mk'_of_mul, mul_one] @[simp, to_additive] lemma mk'_mul_cancel_right (x : M) (y : S) : f.mk' (x * y) y = f.to_map x := by rw [←mul_mk'_one_eq_mk', f.to_map.map_mul, mul_assoc, mul_mk'_one_eq_mk', mk'_self', mul_one] @[to_additive] lemma mk'_mul_cancel_left (x) (y : S) : f.mk' ((y : M) * x) y = f.to_map x := by rw [mul_comm, mk'_mul_cancel_right] @[to_additive] lemma is_unit_comp (j : N →* P) (y : S) : is_unit (j.comp f.to_map y) := ⟨units.map j $ is_unit.lift_right (f.to_map.restrict S) f.map_units y, show j _ = j _, from congr_arg j $ (is_unit.coe_lift_right (f.to_map.restrict S) f.map_units _)⟩ variables {g : M →* P} /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M` and a map of `comm_monoid`s `g : M →* P` such that `g(S) ⊆ units P`, `f x = f y → g x = g y` for all `x y : M`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M` and a map of `add_comm_monoid`s `g : M →+ P` such that `g(S) ⊆ add_units P`, `f x = f y → g x = g y` for all `x y : M`."] lemma eq_of_eq (hg : ∀ y : S, is_unit (g y)) {x y} (h : f.to_map x = f.to_map y) : g x = g y := begin obtain ⟨c, hc⟩ := f.eq_iff_exists.1 h, rw [←mul_one (g x), ←is_unit.mul_lift_right_inv (g.restrict S) hg c], show _ * (g c * _) = _, rw [←mul_assoc, ←g.map_mul, hc, mul_inv_left hg, g.map_mul, mul_comm], end /-- Given `comm_monoid`s `M, P`, localization maps `f : M →* N, k : P →* Q` for submonoids `S, T` respectively, and `g : M →* P` such that `g(S) ⊆ T`, `f x = f y` implies `k (g x) = k (g y)`. -/ @[to_additive "Given `add_comm_monoid`s `M, P`, localization maps `f : M →+ N, k : P →+ Q` for submonoids `S, T` respectively, and `g : M →+ P` such that `g(S) ⊆ T`, `f x = f y` implies `k (g x) = k (g y)`."] lemma comp_eq_of_eq {T : submonoid P} {Q : Type*} [comm_monoid Q] (hg : ∀ y : S, g y ∈ T) (k : localization_map T Q) {x y} (h : f.to_map x = f.to_map y) : k.to_map (g x) = k.to_map (g y) := f.eq_of_eq (λ y : S, show is_unit (k.to_map.comp g y), from k.map_units ⟨g y, hg y⟩) h variables (hg : ∀ y : S, is_unit (g y)) /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M` and a map of `comm_monoid`s `g : M →* P` such that `g y` is invertible for all `y : S`, the homomorphism induced from `N` to `P` sending `z : N` to `g x * (g y)⁻¹`, where `(x, y) : M × S` are such that `z = f x * (f y)⁻¹`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M` and a map of `add_comm_monoid`s `g : M →+ P` such that `g y` is invertible for all `y : S`, the homomorphism induced from `N` to `P` sending `z : N` to `g x - g y`, where `(x, y) : M × S` are such that `z = f x - f y`."] noncomputable def lift : N →* P := { to_fun := λ z, g (f.sec z).1 * ↑(is_unit.lift_right (g.restrict S) hg (f.sec z).2)⁻¹, map_one' := by rw [mul_inv_left, mul_one]; exact f.eq_of_eq hg (by rw [←sec_spec, one_mul]), map_mul' := λ x y, begin rw [mul_inv_left hg, ←mul_assoc, ←mul_assoc, mul_inv_right hg, mul_comm _ (g (f.sec y).1), ←mul_assoc, ←mul_assoc, mul_inv_right hg], repeat { rw ←g.map_mul }, exact f.eq_of_eq hg (by repeat { rw f.to_map.map_mul <|> rw sec_spec' }; ac_refl) end } variables {S g} /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M` and a map of `comm_monoid`s `g : M →* P` such that `g y` is invertible for all `y : S`, the homomorphism induced from `N` to `P` maps `f x * (f y)⁻¹` to `g x * (g y)⁻¹` for all `x : M, y ∈ S`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M` and a map of `add_comm_monoid`s `g : M →+ P` such that `g y` is invertible for all `y : S`, the homomorphism induced from `N` to `P` maps `f x - f y` to `g x - g y` for all `x : M, y ∈ S`."] lemma lift_mk' (x y) : f.lift hg (f.mk' x y) = g x * ↑(is_unit.lift_right (g.restrict S) hg y)⁻¹ := (mul_inv hg).2 $ f.eq_of_eq hg $ by rw [f.to_map.map_mul, f.to_map.map_mul, sec_spec', mul_assoc, f.mk'_spec, mul_comm] /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M`, if a `comm_monoid` map `g : M →* P` induces a map `f.lift hg : N →* P` then for all `z : N, v : P`, we have `f.lift hg z = v ↔ g x = g y * v`, where `x : M, y ∈ S` are such that `z * f y = f x`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M`, if an `add_comm_monoid` map `g : M →+ P` induces a map `f.lift hg : N →+ P` then for all `z : N, v : P`, we have `f.lift hg z = v ↔ g x = g y + v`, where `x : M, y ∈ S` are such that `z + f y = f x`."] lemma lift_spec (z v) : f.lift hg z = v ↔ g (f.sec z).1 = g (f.sec z).2 * v := mul_inv_left hg _ _ v /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M`, if a `comm_monoid` map `g : M →* P` induces a map `f.lift hg : N →* P` then for all `z : N, v w : P`, we have `f.lift hg z * w = v ↔ g x * w = g y * v`, where `x : M, y ∈ S` are such that `z * f y = f x`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M`, if an `add_comm_monoid` map `g : M →+ P` induces a map `f.lift hg : N →+ P` then for all `z : N, v w : P`, we have `f.lift hg z + w = v ↔ g x + w = g y + v`, where `x : M, y ∈ S` are such that `z + f y = f x`."] lemma lift_spec_mul (z w v) : f.lift hg z * w = v ↔ g (f.sec z).1 * w = g (f.sec z).2 * v := begin rw mul_comm, show _ * (_ * _) = _ ↔ _, rw [←mul_assoc, mul_inv_left hg, mul_comm], end @[to_additive] lemma lift_mk'_spec (x v) (y : S) : f.lift hg (f.mk' x y) = v ↔ g x = g y * v := by rw f.lift_mk' hg; exact mul_inv_left hg _ _ _ /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M`, if a `comm_monoid` map `g : M →* P` induces a map `f.lift hg : N →* P` then for all `z : N`, we have `f.lift hg z * g y = g x`, where `x : M, y ∈ S` are such that `z * f y = f x`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M`, if an `add_comm_monoid` map `g : M →+ P` induces a map `f.lift hg : N →+ P` then for all `z : N`, we have `f.lift hg z + g y = g x`, where `x : M, y ∈ S` are such that `z + f y = f x`."] lemma lift_mul_right (z) : f.lift hg z * g (f.sec z).2 = g (f.sec z).1 := show _ * _ * _ = _, by erw [mul_assoc, is_unit.lift_right_inv_mul, mul_one] /-- Given a localization map `f : M →* N` for a submonoid `S ⊆ M`, if a `comm_monoid` map `g : M →* P` induces a map `f.lift hg : N →* P` then for all `z : N`, we have `g y * f.lift hg z = g x`, where `x : M, y ∈ S` are such that `z * f y = f x`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S ⊆ M`, if an `add_comm_monoid` map `g : M →+ P` induces a map `f.lift hg : N →+ P` then for all `z : N`, we have `g y + f.lift hg z = g x`, where `x : M, y ∈ S` are such that `z + f y = f x`."] lemma lift_mul_left (z) : g (f.sec z).2 * f.lift hg z = g (f.sec z).1 := by rw [mul_comm, lift_mul_right] @[simp, to_additive] lemma lift_eq (x : M) : f.lift hg (f.to_map x) = g x := by rw [lift_spec, ←g.map_mul]; exact f.eq_of_eq hg (by rw [sec_spec', f.to_map.map_mul]) @[to_additive] lemma lift_eq_iff {x y : M × S} : f.lift hg (f.mk' x.1 x.2) = f.lift hg (f.mk' y.1 y.2) ↔ g (x.1 * y.2) = g (y.1 * x.2) := by rw [lift_mk', lift_mk', mul_inv hg] @[simp, to_additive] lemma lift_comp : (f.lift hg).comp f.to_map = g := by ext; exact f.lift_eq hg _ @[simp, to_additive] lemma lift_of_comp (j : N →* P) : f.lift (f.is_unit_comp j) = j := begin ext, rw lift_spec, show j _ = j _ * _, erw [←j.map_mul, sec_spec'], end @[to_additive] lemma epic_of_localization_map {j k : N →* P} (h : ∀ a, j.comp f.to_map a = k.comp f.to_map a) : j = k := begin rw [←f.lift_of_comp j, ←f.lift_of_comp k], congr' 1 with x, exact h x, end @[to_additive] lemma lift_unique {j : N →* P} (hj : ∀ x, j (f.to_map x) = g x) : f.lift hg = j := begin ext, rw [lift_spec, ←hj, ←hj, ←j.map_mul], apply congr_arg, rw ←sec_spec', end @[simp, to_additive] lemma lift_id (x) : f.lift f.map_units x = x := monoid_hom.ext_iff.1 (f.lift_of_comp $ monoid_hom.id N) x /-- Given two localization maps `f : M →* N, k : M →* P` for a submonoid `S ⊆ M`, the hom from `P` to `N` induced by `f` is left inverse to the hom from `N` to `P` induced by `k`. -/ @[simp, to_additive "Given two localization maps `f : M →+ N, k : M →+ P` for a submonoid `S ⊆ M`, the hom from `P` to `N` induced by `f` is left inverse to the hom from `N` to `P` induced by `k`."] lemma lift_left_inverse {k : localization_map S P} (z : N) : k.lift f.map_units (f.lift k.map_units z) = z := begin rw lift_spec, cases f.surj z with x hx, conv_rhs {congr, skip, rw f.eq_mk'_iff_mul_eq.2 hx}, rw [mk', ←mul_assoc, mul_inv_right f.map_units, ←f.to_map.map_mul, ←f.to_map.map_mul], apply k.eq_of_eq f.map_units, rw [k.to_map.map_mul, k.to_map.map_mul, ←sec_spec, mul_assoc, lift_spec_mul], repeat { rw ←k.to_map.map_mul }, apply f.eq_of_eq k.map_units, repeat { rw f.to_map.map_mul }, rw [sec_spec', ←hx], ac_refl, end @[to_additive] lemma lift_surjective_iff : function.surjective (f.lift hg) ↔ ∀ v : P, ∃ x : M × S, v * g x.2 = g x.1 := begin split, { intros H v, obtain ⟨z, hz⟩ := H v, obtain ⟨x, hx⟩ := f.surj z, use x, rw [←hz, f.eq_mk'_iff_mul_eq.2 hx, lift_mk', mul_assoc, mul_comm _ (g ↑x.2)], erw [is_unit.mul_lift_right_inv (g.restrict S) hg, mul_one] }, { intros H v, obtain ⟨x, hx⟩ := H v, use f.mk' x.1 x.2, rw [lift_mk', mul_inv_left hg, mul_comm, ←hx] } end @[to_additive] lemma lift_injective_iff : function.injective (f.lift hg) ↔ ∀ x y, f.to_map x = f.to_map y ↔ g x = g y := begin split, { intros H x y, split, { exact f.eq_of_eq hg }, { intro h, rw [←f.lift_eq hg, ←f.lift_eq hg] at h, exact H h } }, { intros H z w h, obtain ⟨x, hx⟩ := f.surj z, obtain ⟨y, hy⟩ := f.surj w, rw [←f.mk'_sec z, ←f.mk'_sec w], exact (mul_inv f.map_units).2 ((H _ _).2 $ (mul_inv hg).1 h) } end variables {T : submonoid P} (hy : ∀ y : S, g y ∈ T) {Q : Type*} [comm_monoid Q] (k : localization_map T Q) /-- Given a `comm_monoid` homomorphism `g : M →* P` where for submonoids `S ⊆ M, T ⊆ P` we have `g(S) ⊆ T`, the induced monoid homomorphism from the localization of `M` at `S` to the localization of `P` at `T`: if `f : M →* N` and `k : P →* Q` are localization maps for `S` and `T` respectively, we send `z : N` to `k (g x) * (k (g y))⁻¹`, where `(x, y) : M × S` are such that `z = f x * (f y)⁻¹`. -/ @[to_additive "Given a `add_comm_monoid` homomorphism `g : M →+ P` where for submonoids `S ⊆ M, T ⊆ P` we have `g(S) ⊆ T`, the induced add_monoid homomorphism from the localization of `M` at `S` to the localization of `P` at `T`: if `f : M →+ N` and `k : P →+ Q` are localization maps for `S` and `T` respectively, we send `z : N` to `k (g x) - k (g y)`, where `(x, y) : M × S` are such that `z = f x - f y`."] noncomputable def map : N →* Q := @lift _ _ _ _ _ _ _ f (k.to_map.comp g) $ λ y, k.map_units ⟨g y, hy y⟩ variables {k} @[to_additive] lemma map_eq (x) : f.map hy k (f.to_map x) = k.to_map (g x) := f.lift_eq (λ y, k.map_units ⟨g y, hy y⟩) x @[simp, to_additive] lemma map_comp : (f.map hy k).comp f.to_map = k.to_map.comp g := f.lift_comp $ λ y, k.map_units ⟨g y, hy y⟩ @[to_additive] lemma map_mk' (x) (y : S) : f.map hy k (f.mk' x y) = k.mk' (g x) ⟨g y, hy y⟩ := begin rw [map, lift_mk', mul_inv_left], { show k.to_map (g x) = k.to_map (g y) * _, rw mul_mk'_eq_mk'_of_mul, exact (k.mk'_mul_cancel_left (g x) ⟨(g y), hy y⟩).symm }, end /-- Given localization maps `f : M →* N, k : P →* Q` for submonoids `S, T` respectively, if a `comm_monoid` homomorphism `g : M →* P` induces a `f.map hy k : N →* Q`, then for all `z : N`, `u : Q`, we have `f.map hy k z = u ↔ k (g x) = k (g y) * u` where `x : M, y ∈ S` are such that `z * f y = f x`. -/ @[to_additive "Given localization maps `f : M →+ N, k : P →+ Q` for submonoids `S, T` respectively, if an `add_comm_monoid` homomorphism `g : M →+ P` induces a `f.map hy k : N →+ Q`, then for all `z : N`, `u : Q`, we have `f.map hy k z = u ↔ k (g x) = k (g y) + u` where `x : M, y ∈ S` are such that `z + f y = f x`."] lemma map_spec (z u) : f.map hy k z = u ↔ k.to_map (g (f.sec z).1) = k.to_map (g (f.sec z).2) * u := f.lift_spec (λ y, k.map_units ⟨g y, hy y⟩) _ _ /-- Given localization maps `f : M →* N, k : P →* Q` for submonoids `S, T` respectively, if a `comm_monoid` homomorphism `g : M →* P` induces a `f.map hy k : N →* Q`, then for all `z : N`, we have `f.map hy k z * k (g y) = k (g x)` where `x : M, y ∈ S` are such that `z * f y = f x`. -/ @[to_additive "Given localization maps `f : M →+ N, k : P →+ Q` for submonoids `S, T` respectively, if an `add_comm_monoid` homomorphism `g : M →+ P` induces a `f.map hy k : N →+ Q`, then for all `z : N`, we have `f.map hy k z + k (g y) = k (g x)` where `x : M, y ∈ S` are such that `z + f y = f x`."] lemma map_mul_right (z) : f.map hy k z * (k.to_map (g (f.sec z).2)) = k.to_map (g (f.sec z).1) := f.lift_mul_right (λ y, k.map_units ⟨g y, hy y⟩) _ /-- Given localization maps `f : M →* N, k : P →* Q` for submonoids `S, T` respectively, if a `comm_monoid` homomorphism `g : M →* P` induces a `f.map hy k : N →* Q`, then for all `z : N`, we have `k (g y) * f.map hy k z = k (g x)` where `x : M, y ∈ S` are such that `z * f y = f x`. -/ @[to_additive "Given localization maps `f : M →+ N, k : P →+ Q` for submonoids `S, T` respectively, if an `add_comm_monoid` homomorphism `g : M →+ P` induces a `f.map hy k : N →+ Q`, then for all `z : N`, we have `k (g y) + f.map hy k z = k (g x)` where `x : M, y ∈ S` are such that `z + f y = f x`."] lemma map_mul_left (z) : k.to_map (g (f.sec z).2) * f.map hy k z = k.to_map (g (f.sec z).1) := by rw [mul_comm, f.map_mul_right] @[simp, to_additive] lemma map_id (z : N) : f.map (λ y, show monoid_hom.id M y ∈ S, from y.2) f z = z := f.lift_id z /-- If `comm_monoid` homs `g : M →* P, l : P →* A` induce maps of localizations, the composition of the induced maps equals the map of localizations induced by `l ∘ g`. -/ @[to_additive "If `add_comm_monoid` homs `g : M →+ P, l : P →+ A` induce maps of localizations, the composition of the induced maps equals the map of localizations induced by `l ∘ g`."] lemma map_comp_map {A : Type*} [comm_monoid A] {U : submonoid A} {R} [comm_monoid R] (j : localization_map U R) {l : P →* A} (hl : ∀ w : T, l w ∈ U) : (k.map hl j).comp (f.map hy k) = f.map (λ x, show l.comp g x ∈ U, from hl ⟨g x, hy x⟩) j := begin ext z, show j.to_map _ * _ = j.to_map (l _) * _, { rw [mul_inv_left, ←mul_assoc, mul_inv_right], show j.to_map _ * j.to_map (l (g _)) = j.to_map (l _) * _, rw [←j.to_map.map_mul, ←j.to_map.map_mul, ←l.map_mul, ←l.map_mul], exact k.comp_eq_of_eq hl j (by rw [k.to_map.map_mul, k.to_map.map_mul, sec_spec', mul_assoc, map_mul_right]) }, end /-- If `comm_monoid` homs `g : M →* P, l : P →* A` induce maps of localizations, the composition of the induced maps equals the map of localizations induced by `l ∘ g`. -/ @[to_additive "If `add_comm_monoid` homs `g : M →+ P, l : P →+ A` induce maps of localizations, the composition of the induced maps equals the map of localizations induced by `l ∘ g`."] lemma map_map {A : Type*} [comm_monoid A] {U : submonoid A} {R} [comm_monoid R] (j : localization_map U R) {l : P →* A} (hl : ∀ w : T, l w ∈ U) (x) : k.map hl j (f.map hy k x) = f.map (λ x, show l.comp g x ∈ U, from hl ⟨g x, hy x⟩) j x := by rw ←f.map_comp_map hy j hl; refl section away_map variables (x : M) /-- Given `x : M`, the type of `comm_monoid` homomorphisms `f : M →* N` such that `N` is isomorphic to the localization of `M` at the submonoid generated by `x`. -/ @[reducible, to_additive "Given `x : M`, the type of `add_comm_monoid` homomorphisms `f : M →+ N` such that `N` is isomorphic to the localization of `M` at the submonoid generated by `x`."] def away_map (N' : Type*) [comm_monoid N'] := localization_map (powers x) N' variables (F : away_map x N) /-- Given `x : M` and a localization map `F : M →* N` away from `x`, `inv_self` is `(F x)⁻¹`. -/ noncomputable def away_map.inv_self : N := F.mk' 1 ⟨x, mem_powers _⟩ /-- Given `x : M`, a localization map `F : M →* N` away from `x`, and a map of `comm_monoid`s `g : M →* P` such that `g x` is invertible, the homomorphism induced from `N` to `P` sending `z : N` to `g y * (g x)⁻ⁿ`, where `y : M, n : ℕ` are such that `z = F y * (F x)⁻ⁿ`. -/ noncomputable def away_map.lift (hg : is_unit (g x)) : N →* P := F.lift $ λ y, show is_unit (g y.1), begin obtain ⟨n, hn⟩ := y.2, rw [←hn, g.map_pow], exact is_unit.pow n hg, end @[simp] lemma away_map.lift_eq (hg : is_unit (g x)) (a : M) : F.lift x hg (F.to_map a) = g a := lift_eq _ _ _ @[simp] lemma away_map.lift_comp (hg : is_unit (g x)) : (F.lift x hg).comp F.to_map = g := lift_comp _ _ /-- Given `x y : M` and localization maps `F : M →* N, G : M →* P` away from `x` and `x * y` respectively, the homomorphism induced from `N` to `P`. -/ noncomputable def away_to_away_right (y : M) (G : away_map (x * y) P) : N →* P := F.lift x $ show is_unit (G.to_map x), from is_unit_of_mul_eq_one (G.to_map x) (G.mk' y ⟨x * y, mem_powers _⟩) $ by rw [mul_mk'_eq_mk'_of_mul, mk'_self] end away_map end localization_map end submonoid namespace add_submonoid namespace localization_map section away_map variables {A : Type*} [add_comm_monoid A] (x : A) {B : Type*} [add_comm_monoid B] (F : away_map x B) {C : Type*} [add_comm_monoid C] {g : A →+ C} /-- Given `x : A` and a localization map `F : A →+ B` away from `x`, `neg_self` is `- (F x)`. -/ noncomputable def away_map.neg_self : B := F.mk' 0 ⟨x, mem_multiples _⟩ /-- Given `x : A`, a localization map `F : A →+ B` away from `x`, and a map of `add_comm_monoid`s `g : A →+ C` such that `g x` is invertible, the homomorphism induced from `B` to `C` sending `z : B` to `g y - n • g x`, where `y : A, n : ℕ` are such that `z = F y - n • F x`. -/ noncomputable def away_map.lift (hg : is_add_unit (g x)) : B →+ C := F.lift $ λ y, show is_add_unit (g y.1), begin obtain ⟨n, hn⟩ := y.2, rw ← hn, dsimp, rw [g.map_nsmul], exact is_add_unit.map (nsmul_add_monoid_hom n : C →+ C) hg, end @[simp] lemma away_map.lift_eq (hg : is_add_unit (g x)) (a : A) : F.lift x hg (F.to_map a) = g a := lift_eq _ _ _ @[simp] lemma away_map.lift_comp (hg : is_add_unit (g x)) : (F.lift x hg).comp F.to_map = g := lift_comp _ _ /-- Given `x y : A` and localization maps `F : A →+ B, G : A →+ C` away from `x` and `x + y` respectively, the homomorphism induced from `B` to `C`. -/ noncomputable def away_to_away_right (y : A) (G : away_map (x + y) C) : B →+ C := F.lift x $ show is_add_unit (G.to_map x), from is_add_unit_of_add_eq_zero (G.to_map x) (G.mk' y ⟨x + y, mem_multiples _⟩) $ by rw [add_mk'_eq_mk'_of_add, mk'_self] end away_map end localization_map end add_submonoid namespace submonoid namespace localization_map variables (f : S.localization_map N) {g : M →* P} (hg : ∀ (y : S), is_unit (g y)) {T : submonoid P} {Q : Type*} [comm_monoid Q] /-- If `f : M →* N` and `k : M →* P` are localization maps for a submonoid `S`, we get an isomorphism of `N` and `P`. -/ @[to_additive "If `f : M →+ N` and `k : M →+ R` are localization maps for a submonoid `S`, we get an isomorphism of `N` and `R`."] noncomputable def mul_equiv_of_localizations (k : localization_map S P) : N ≃* P := ⟨f.lift k.map_units, k.lift f.map_units, f.lift_left_inverse, k.lift_left_inverse, monoid_hom.map_mul _⟩ @[simp, to_additive] lemma mul_equiv_of_localizations_apply {k : localization_map S P} {x} : f.mul_equiv_of_localizations k x = f.lift k.map_units x := rfl @[simp, to_additive] lemma mul_equiv_of_localizations_symm_apply {k : localization_map S P} {x} : (f.mul_equiv_of_localizations k).symm x = k.lift f.map_units x := rfl @[to_additive] lemma mul_equiv_of_localizations_symm_eq_mul_equiv_of_localizations {k : localization_map S P} : (k.mul_equiv_of_localizations f).symm = f.mul_equiv_of_localizations k := rfl /-- If `f : M →* N` is a localization map for a submonoid `S` and `k : N ≃* P` is an isomorphism of `comm_monoid`s, `k ∘ f` is a localization map for `M` at `S`. -/ @[to_additive "If `f : M →+ N` is a localization map for a submonoid `S` and `k : N ≃+ P` is an isomorphism of `add_comm_monoid`s, `k ∘ f` is a localization map for `M` at `S`."] def of_mul_equiv_of_localizations (k : N ≃* P) : localization_map S P := (k.to_monoid_hom.comp f.to_map).to_localization_map (λ y, is_unit_comp f k.to_monoid_hom y) (λ v, let ⟨z, hz⟩ := k.to_equiv.surjective v in let ⟨x, hx⟩ := f.surj z in ⟨x, show v * k _ = k _, by rw [←hx, k.map_mul, ←hz]; refl⟩) (λ x y, k.apply_eq_iff_eq.trans f.eq_iff_exists) @[simp, to_additive] lemma of_mul_equiv_of_localizations_apply {k : N ≃* P} (x) : (f.of_mul_equiv_of_localizations k).to_map x = k (f.to_map x) := rfl @[to_additive] lemma of_mul_equiv_of_localizations_eq {k : N ≃* P} : (f.of_mul_equiv_of_localizations k).to_map = k.to_monoid_hom.comp f.to_map := rfl @[to_additive] lemma symm_comp_of_mul_equiv_of_localizations_apply {k : N ≃* P} (x) : k.symm ((f.of_mul_equiv_of_localizations k).to_map x) = f.to_map x := k.symm_apply_apply (f.to_map x) @[to_additive] lemma symm_comp_of_mul_equiv_of_localizations_apply' {k : P ≃* N} (x) : k ((f.of_mul_equiv_of_localizations k.symm).to_map x) = f.to_map x := k.apply_symm_apply (f.to_map x) @[to_additive] lemma of_mul_equiv_of_localizations_eq_iff_eq {k : N ≃* P} {x y} : (f.of_mul_equiv_of_localizations k).to_map x = y ↔ f.to_map x = k.symm y := k.to_equiv.eq_symm_apply.symm @[to_additive add_equiv_of_localizations_right_inv] lemma mul_equiv_of_localizations_right_inv (k : localization_map S P) : f.of_mul_equiv_of_localizations (f.mul_equiv_of_localizations k) = k := to_map_injective $ f.lift_comp k.map_units @[simp, to_additive add_equiv_of_localizations_right_inv_apply] lemma mul_equiv_of_localizations_right_inv_apply {k : localization_map S P} {x} : (f.of_mul_equiv_of_localizations (f.mul_equiv_of_localizations k)).to_map x = k.to_map x := ext_iff.1 (f.mul_equiv_of_localizations_right_inv k) x @[to_additive] lemma mul_equiv_of_localizations_left_inv (k : N ≃* P) : f.mul_equiv_of_localizations (f.of_mul_equiv_of_localizations k) = k := mul_equiv.ext $ monoid_hom.ext_iff.1 $ f.lift_of_comp k.to_monoid_hom @[simp, to_additive] lemma mul_equiv_of_localizations_left_inv_apply {k : N ≃* P} (x) : f.mul_equiv_of_localizations (f.of_mul_equiv_of_localizations k) x = k x := by rw mul_equiv_of_localizations_left_inv @[simp, to_additive] lemma of_mul_equiv_of_localizations_id : f.of_mul_equiv_of_localizations (mul_equiv.refl N) = f := by ext; refl @[to_additive] lemma of_mul_equiv_of_localizations_comp {k : N ≃* P} {j : P ≃* Q} : (f.of_mul_equiv_of_localizations (k.trans j)).to_map = j.to_monoid_hom.comp (f.of_mul_equiv_of_localizations k).to_map := by ext; refl /-- Given `comm_monoid`s `M, P` and submonoids `S ⊆ M, T ⊆ P`, if `f : M →* N` is a localization map for `S` and `k : P ≃* M` is an isomorphism of `comm_monoid`s such that `k(T) = S`, `f ∘ k` is a localization map for `T`. -/ @[to_additive "Given `comm_monoid`s `M, P` and submonoids `S ⊆ M, T ⊆ P`, if `f : M →* N` is a localization map for `S` and `k : P ≃* M` is an isomorphism of `comm_monoid`s such that `k(T) = S`, `f ∘ k` is a localization map for `T`."] def of_mul_equiv_of_dom {k : P ≃* M} (H : T.map k.to_monoid_hom = S) : localization_map T N := let H' : S.comap k.to_monoid_hom = T := H ▸ (set_like.coe_injective $ T.1.preimage_image_eq k.to_equiv.injective) in (f.to_map.comp k.to_monoid_hom).to_localization_map (λ y, let ⟨z, hz⟩ := f.map_units ⟨k y, H ▸ set.mem_image_of_mem k y.2⟩ in ⟨z, hz⟩) (λ z, let ⟨x, hx⟩ := f.surj z in let ⟨v, hv⟩ := k.to_equiv.surjective x.1 in let ⟨w, hw⟩ := k.to_equiv.surjective x.2 in ⟨(v, ⟨w, H' ▸ show k w ∈ S, from hw.symm ▸ x.2.2⟩), show z * f.to_map (k.to_equiv w) = f.to_map (k.to_equiv v), by erw [hv, hw, hx]; refl⟩) (λ x y, show f.to_map _ = f.to_map _ ↔ _, by erw f.eq_iff_exists; exact ⟨λ ⟨c, hc⟩, let ⟨d, hd⟩ := k.to_equiv.surjective c in ⟨⟨d, H' ▸ show k d ∈ S, from hd.symm ▸ c.2⟩, by erw [←hd, ←k.map_mul, ←k.map_mul] at hc; exact k.to_equiv.injective hc⟩, λ ⟨c, hc⟩, ⟨⟨k c, H ▸ set.mem_image_of_mem k c.2⟩, by erw ←k.map_mul; rw [hc, k.map_mul]; refl⟩⟩) @[simp, to_additive] lemma of_mul_equiv_of_dom_apply {k : P ≃* M} (H : T.map k.to_monoid_hom = S) (x) : (f.of_mul_equiv_of_dom H).to_map x = f.to_map (k x) := rfl @[to_additive] lemma of_mul_equiv_of_dom_eq {k : P ≃* M} (H : T.map k.to_monoid_hom = S) : (f.of_mul_equiv_of_dom H).to_map = f.to_map.comp k.to_monoid_hom := rfl @[to_additive] lemma of_mul_equiv_of_dom_comp_symm {k : P ≃* M} (H : T.map k.to_monoid_hom = S) (x) : (f.of_mul_equiv_of_dom H).to_map (k.symm x) = f.to_map x := congr_arg f.to_map $ k.apply_symm_apply x @[to_additive] lemma of_mul_equiv_of_dom_comp {k : M ≃* P} (H : T.map k.symm.to_monoid_hom = S) (x) : (f.of_mul_equiv_of_dom H).to_map (k x) = f.to_map x := congr_arg f.to_map $ k.symm_apply_apply x /-- A special case of `f ∘ id = f`, `f` a localization map. -/ @[simp, to_additive "A special case of `f ∘ id = f`, `f` a localization map."] lemma of_mul_equiv_of_dom_id : f.of_mul_equiv_of_dom (show S.map (mul_equiv.refl M).to_monoid_hom = S, from submonoid.ext $ λ x, ⟨λ ⟨y, hy, h⟩, h ▸ hy, λ h, ⟨x, h, rfl⟩⟩) = f := by ext; refl /-- Given localization maps `f : M →* N, k : P →* U` for submonoids `S, T` respectively, an isomorphism `j : M ≃* P` such that `j(S) = T` induces an isomorphism of localizations `N ≃* U`. -/ @[to_additive "Given localization maps `f : M →+ N, k : P →+ U` for submonoids `S, T` respectively, an isomorphism `j : M ≃+ P` such that `j(S) = T` induces an isomorphism of localizations `N ≃+ U`."] noncomputable def mul_equiv_of_mul_equiv (k : localization_map T Q) {j : M ≃* P} (H : S.map j.to_monoid_hom = T) : N ≃* Q := f.mul_equiv_of_localizations $ k.of_mul_equiv_of_dom H @[simp, to_additive] lemma mul_equiv_of_mul_equiv_eq_map_apply {k : localization_map T Q} {j : M ≃* P} (H : S.map j.to_monoid_hom = T) (x) : f.mul_equiv_of_mul_equiv k H x = f.map (λ y : S, show j.to_monoid_hom y ∈ T, from H ▸ set.mem_image_of_mem j y.2) k x := rfl @[to_additive] lemma mul_equiv_of_mul_equiv_eq_map {k : localization_map T Q} {j : M ≃* P} (H : S.map j.to_monoid_hom = T) : (f.mul_equiv_of_mul_equiv k H).to_monoid_hom = f.map (λ y : S, show j.to_monoid_hom y ∈ T, from H ▸ set.mem_image_of_mem j y.2) k := rfl @[simp, to_additive] lemma mul_equiv_of_mul_equiv_eq {k : localization_map T Q} {j : M ≃* P} (H : S.map j.to_monoid_hom = T) (x) : f.mul_equiv_of_mul_equiv k H (f.to_map x) = k.to_map (j x) := f.map_eq (λ y : S, H ▸ set.mem_image_of_mem j y.2) _ @[simp, to_additive] lemma mul_equiv_of_mul_equiv_mk' {k : localization_map T Q} {j : M ≃* P} (H : S.map j.to_monoid_hom = T) (x y) : f.mul_equiv_of_mul_equiv k H (f.mk' x y) = k.mk' (j x) ⟨j y, H ▸ set.mem_image_of_mem j y.2⟩ := f.map_mk' (λ y : S, H ▸ set.mem_image_of_mem j y.2) _ _ @[simp, to_additive] lemma of_mul_equiv_of_mul_equiv_apply {k : localization_map T Q} {j : M ≃* P} (H : S.map j.to_monoid_hom = T) (x) : (f.of_mul_equiv_of_localizations (f.mul_equiv_of_mul_equiv k H)).to_map x = k.to_map (j x) := ext_iff.1 (f.mul_equiv_of_localizations_right_inv (k.of_mul_equiv_of_dom H)) x @[to_additive] lemma of_mul_equiv_of_mul_equiv {k : localization_map T Q} {j : M ≃* P} (H : S.map j.to_monoid_hom = T) : (f.of_mul_equiv_of_localizations (f.mul_equiv_of_mul_equiv k H)).to_map = k.to_map.comp j.to_monoid_hom := monoid_hom.ext $ f.of_mul_equiv_of_mul_equiv_apply H end localization_map end submonoid namespace localization variables (S) /-- Natural hom sending `x : M`, `M` a `comm_monoid`, to the equivalence class of `(x, 1)` in the localization of `M` at a submonoid. -/ @[to_additive "Natural homomorphism sending `x : M`, `M` an `add_comm_monoid`, to the equivalence class of `(x, 0)` in the localization of `M` at a submonoid."] def monoid_of : submonoid.localization_map S (localization S) := { to_fun := λ x, mk x 1, map_one' := mk_one, map_mul' := λ x y, by rw [mk_mul, mul_one], map_units' := λ y, is_unit_iff_exists_inv.2 ⟨mk 1 y, by rw [mk_mul, mul_one, one_mul, mk_self]⟩, surj' := λ z, induction_on z $ λ x, ⟨x, by rw [mk_mul, mul_comm x.fst, ← mk_mul, mk_self, one_mul]⟩, eq_iff_exists' := λ x y, mk_eq_mk_iff.trans $ r_iff_exists.trans $ show (∃ (c : S), x * 1 * c = y * 1 * c) ↔ _, by rw [mul_one, mul_one], ..(r S).mk'.comp $ monoid_hom.inl M S } variables {S} @[to_additive] lemma mk_one_eq_monoid_of_mk (x) : mk x 1 = (monoid_of S).to_map x := rfl @[to_additive] lemma mk_eq_monoid_of_mk'_apply (x y) : mk x y = (monoid_of S).mk' x y := show _ = _ * _, from (submonoid.localization_map.mul_inv_right (monoid_of S).map_units _ _ _).2 $ begin rw [←mk_one_eq_monoid_of_mk, ←mk_one_eq_monoid_of_mk, show mk x y * mk y 1 = mk (x * y) (1 * y), by rw [mul_comm 1 y, mk_mul], show mk x 1 = mk (x * 1) ((1 : S) * 1), by rw [mul_one, mul_one]], exact mk_eq_mk_iff.2 (con.symm _ $ (localization.r S).mul (con.refl _ (x, 1)) $ one_rel _), end @[simp, to_additive] lemma mk_eq_monoid_of_mk' : mk = (monoid_of S).mk' := funext $ λ _, funext $ λ _, mk_eq_monoid_of_mk'_apply _ _ universes u @[simp, to_additive] lemma lift_on_mk' {p : Sort u} (f : ∀ (a : M) (b : S), p) (H) (a : M) (b : S) : lift_on ((monoid_of S).mk' a b) f H = f a b := by rw [← mk_eq_monoid_of_mk', lift_on_mk] @[simp, to_additive] lemma lift_on₂_mk' {p : Sort*} (f : M → S → M → S → p) (H) (a c : M) (b d : S) : lift_on₂ ((monoid_of S).mk' a b) ((monoid_of S).mk' c d) f H = f a b c d := by rw [← mk_eq_monoid_of_mk', lift_on₂_mk] variables (f : submonoid.localization_map S N) /-- Given a localization map `f : M →* N` for a submonoid `S`, we get an isomorphism between the localization of `M` at `S` as a quotient type and `N`. -/ @[to_additive "Given a localization map `f : M →+ N` for a submonoid `S`, we get an isomorphism between the localization of `M` at `S` as a quotient type and `N`."] noncomputable def mul_equiv_of_quotient (f : submonoid.localization_map S N) : localization S ≃* N := (monoid_of S).mul_equiv_of_localizations f variables {f} @[simp, to_additive] lemma mul_equiv_of_quotient_apply (x) : mul_equiv_of_quotient f x = (monoid_of S).lift f.map_units x := rfl @[simp, to_additive] lemma mul_equiv_of_quotient_mk' (x y) : mul_equiv_of_quotient f ((monoid_of S).mk' x y) = f.mk' x y := (monoid_of S).lift_mk' _ _ _ @[to_additive] lemma mul_equiv_of_quotient_mk (x y) : mul_equiv_of_quotient f (mk x y) = f.mk' x y := by rw mk_eq_monoid_of_mk'_apply; exact mul_equiv_of_quotient_mk' _ _ @[simp, to_additive] lemma mul_equiv_of_quotient_monoid_of (x) : mul_equiv_of_quotient f ((monoid_of S).to_map x) = f.to_map x := (monoid_of S).lift_eq _ _ @[simp, to_additive] lemma mul_equiv_of_quotient_symm_mk' (x y) : (mul_equiv_of_quotient f).symm (f.mk' x y) = (monoid_of S).mk' x y := f.lift_mk' _ _ _ @[to_additive] lemma mul_equiv_of_quotient_symm_mk (x y) : (mul_equiv_of_quotient f).symm (f.mk' x y) = mk x y := by rw mk_eq_monoid_of_mk'_apply; exact mul_equiv_of_quotient_symm_mk' _ _ @[simp, to_additive] lemma mul_equiv_of_quotient_symm_monoid_of (x) : (mul_equiv_of_quotient f).symm (f.to_map x) = (monoid_of S).to_map x := f.lift_eq _ _ section away variables (x : M) /-- Given `x : M`, the localization of `M` at the submonoid generated by `x`, as a quotient. -/ @[reducible, to_additive "Given `x : M`, the localization of `M` at the submonoid generated by `x`, as a quotient."] def away := localization (submonoid.powers x) /-- Given `x : M`, `inv_self` is `x⁻¹` in the localization (as a quotient type) of `M` at the submonoid generated by `x`. -/ @[to_additive "Given `x : M`, `neg_self` is `-x` in the localization (as a quotient type) of `M` at the submonoid generated by `x`."] def away.inv_self : away x := mk 1 ⟨x, submonoid.mem_powers _⟩ /-- Given `x : M`, the natural hom sending `y : M`, `M` a `comm_monoid`, to the equivalence class of `(y, 1)` in the localization of `M` at the submonoid generated by `x`. -/ @[reducible, to_additive "Given `x : M`, the natural hom sending `y : M`, `M` an `add_comm_monoid`, to the equivalence class of `(y, 0)` in the localization of `M` at the submonoid generated by `x`."] def away.monoid_of : submonoid.localization_map.away_map x (away x) := monoid_of (submonoid.powers x) @[simp, to_additive] lemma away.mk_eq_monoid_of_mk' : mk = (away.monoid_of x).mk' := mk_eq_monoid_of_mk' /-- Given `x : M` and a localization map `f : M →* N` away from `x`, we get an isomorphism between the localization of `M` at the submonoid generated by `x` as a quotient type and `N`. -/ @[to_additive "Given `x : M` and a localization map `f : M →+ N` away from `x`, we get an isomorphism between the localization of `M` at the submonoid generated by `x` as a quotient type and `N`."] noncomputable def away.mul_equiv_of_quotient (f : submonoid.localization_map.away_map x N) : away x ≃* N := mul_equiv_of_quotient f end away end localization end comm_monoid section comm_monoid_with_zero variables {M : Type*} [comm_monoid_with_zero M] (S : submonoid M) (N : Type*) [comm_monoid_with_zero N] {P : Type*} [comm_monoid_with_zero P] namespace submonoid /-- The type of homomorphisms between monoids with zero satisfying the characteristic predicate: if `f : M →*₀ N` satisfies this predicate, then `N` is isomorphic to the localization of `M` at `S`. -/ @[nolint has_nonempty_instance] structure localization_with_zero_map extends localization_map S N := (map_zero' : to_fun 0 = 0) attribute [nolint doc_blame] localization_with_zero_map.to_localization_map variables {S N} /-- The monoid with zero hom underlying a `localization_map`. -/ def localization_with_zero_map.to_monoid_with_zero_hom (f : localization_with_zero_map S N) : M →*₀ N := { .. f } end submonoid namespace localization local attribute [semireducible] localization /-- The zero element in a localization is defined as `(0, 1)`. Should not be confused with `add_localization.zero` which is `(0, 0)`. -/ @[irreducible] protected def zero : localization S := mk 0 1 instance : has_zero (localization S) :=⟨localization.zero S⟩ local attribute [semireducible] localization.zero localization.mul instance : comm_monoid_with_zero (localization S) := by refine_struct { zero := 0, .. localization.comm_monoid S }; exact λ x, localization.induction_on x $ by { intros, refine mk_eq_mk_iff.mpr (r_of_eq _), simp only [zero_mul, mul_zero] } attribute [irreducible] localization variables {S} lemma mk_zero (x : S) : mk 0 (x : S) = 0 := calc mk 0 x = mk 0 1 : mk_eq_mk_iff.mpr (r_of_eq (by simp)) ... = 0 : rfl lemma lift_on_zero {p : Type*} (f : ∀ (x : M) (y : S), p) (H) : lift_on 0 f H = f 0 1 := by rw [← mk_zero 1, lift_on_mk] end localization variables {S N} namespace submonoid @[simp] lemma localization_map.sec_zero_fst {f : localization_map S N} : f.to_map (f.sec 0).fst = 0 := by rw [localization_map.sec_spec', mul_zero] namespace localization_with_zero_map /-- Given a localization map `f : M →*₀ N` for a submonoid `S ⊆ M` and a map of `comm_monoid_with_zero`s `g : M →*₀ P` such that `g y` is invertible for all `y : S`, the homomorphism induced from `N` to `P` sending `z : N` to `g x * (g y)⁻¹`, where `(x, y) : M × S` are such that `z = f x * (f y)⁻¹`. -/ noncomputable def lift (f : localization_with_zero_map S N) (g : M →*₀ P) (hg : ∀ y : S, is_unit (g y)) : N →*₀ P := { map_zero' := begin rw [monoid_hom.to_fun_eq_coe, localization_map.lift_spec, mul_zero, ←map_zero g, ←g.to_monoid_hom_coe], refine f.to_localization_map.eq_of_eq hg _, rw localization_map.sec_zero_fst, exact f.to_monoid_with_zero_hom.map_zero.symm end .. @localization_map.lift _ _ _ _ _ _ _ f.to_localization_map g.to_monoid_hom hg } end localization_with_zero_map end submonoid end comm_monoid_with_zero